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ABSTRACT

The effective use of active magnetic bearings for vibration control in
turbomachinery depends on an understanding of the forces available from a magnetic
bearing actuator. The purpose of this project was to characterize the forces as functions
shaft position.

Both numerical and experimental studies were done to determine the characteristics
of the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical
studies were based on finite element computations and included both linear and nonlinear
magnetization functions.

Measurements of the force versus position of a nonrotating shaft were made using
two separate measurement rigs, one based on strain guage measurement of forces, the
other based on deflections of a calibrated beam.

The general trends of the measured principal forces agree with the predictions of the
theory while the magnitudes of forces are somewhat smaller than those predicted. Other
aspects of theory are not confirmed by the measurements. The measured forces in the
normal direction are larger than those predicted by theory when the rotor has a normal
eccentricity.

Over the ranges of position examined, the data indicate an approximately linear
relationship between the normal eccentricity of the shaft and the ratio of normal to principal
force. The constant of proportionality seems to be larger at lower currents, but for all cases
examined its value is between 0.14 and 0.17. The nonlinear theory predicts the existence
of normal forces, but has not predicted such a large constant of proportionality for the
ratio.

The type of coupling illustrated by these measurements would not tend to cause
whirl, because the coupling coefficients have the same sign, unlike the case of a fluid film
bearing, where the normal stiffness coefficients often have opposite signs. They might,
however, tend to cause other self-excited behavior. This possibility must be considered
when designing magnetic bearings for flexible rotor applications, such as gas turbines and
other turbomachinery.

In related work attached as an appendix, simulations of 2DOF systems subject to
these force models show that significant nonlinear behavior can occur, including multiple
coexisting solutions, bifurcations in response as the stabilities of the respective solutions

change, and self-similarity in stability boundaries.
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1. INTRODUCTION

This report describes work done under Grant NAG 3-968 during the performance
period October 1989 to 1 February 1992, in addition to further related work using
knowledge gained during the work performed under this grant. The purpose of the
research was to examine certain aspects of the potential of magnetic bearings for vibration
control in turbomachinery. The principal thrusts of the research have been

1) Calculation of the two-dimensional forces exerted on a shaft by a typical magnetic
actuator under open loop conditions.

2) Measurement of such forces using specially designed apparatus.

3) Simulation of dynamics of a simple rotor using the measured and calculated forces
along with a control law.

The report consists of three principal sections, plus three appendices. Section 1 is
an introduction and a brief review of pertinent literature at the time of the beginning of this
work.

Section 2 describes the analytical and numerical modelling of the magnetic flux
distribution in magnets of a magnetic actuator and the results of calculations of force
between the actuator and the shaft. Section 3 describes two kinds of experiments
conducted to determine the forces that are modelled in Section 2. Because comparisons
between theory and experiment are made, it is sometimes necessary to refer in Section 2 to
force measurements that will be described in more detail in Section 3. Similarly, Section 3
refers back to Section 2.

Appendix A is a listing of the computer program used for calculations using an air-
gap method. Appendix B is a description of methods used in calculations of force
including flux contained in metal parts.

Appendix C contains the text of a thesis submitted to Duke University by Thomas
Walsh for the M.S. degree, which uses the results of measurements and calculations done
under this grant in the simulation of a rotor-magnetic bearing system. This work was
performed subsequent to the actual grant period, but is included because of the close
relation to and dependence on the results obtained under this grant.

In addition to the sections describing technical findings, this report summarizes
related activities, including papers and reports, personnel, equipment and progress of

students.



1.1 Magnetic Suspension of Turbomachine Shafts

The introduction of practical magnetic supports for rotating shafts is a recent
development. These devices have the potential of replacing fluid film bearings and rolling
element bearings in some critical applications, and of acting as supplemental control
actuators alongside these traditional bearings in order to limit vibration, noise and
instability. Figure 1.1 shows the general concept of a rotating shaft suspended by a set of
controlled magnetic actuators. In this report, the combination of an actuator, its sensors,
controller and power amplifier is called a magnetic bearing.

In a magnetic bearing the shaft is supported by the force established between a set of
electromagnets and the shaft due to the magnetic field. There is no direct contact between
the shaft and any part of the bearing. This method of support has several advantages over
traditional fluid film or rolling element bearings. Since no lubricant is needed, there is no
sealing requirement to prevent either the lubricant or the working fluid from contaminating
the other. Also, the lubricant supply system required for a traditional bearing is eliminated,
and the frictional losses in the magnetic support are negligible compared to those in a fluid
film bearing. Finally, since the magnetic bearing requires a feedback control system to
maintain stability even in a nonrotating steady-state case, this feedback loop may be used to
advantage in adjusting the dynamic characteristics of the rotor-bearing system to optimize
the machine's vibration characteristics. The magnetic bearing could be designed so that it
opposes the destabilizing effects of other parts of the system.

It is this last possibility that is the most exciting aspect of magnetic suspension. The
ability to control better the dynamics of shafts and thus to reduce the danger and expense
that result from high levels of vibration is the principal motivation for research in this field.

Magnetic bearings are rapidly gaining acceptance as replacements for traditional fluid
film bearings in the design of turbomachinery. Applications include the small and
sensitive, such as turbomolecular pumps and X-ray generation equipment, as well as the
extremely precise, such as machine tool spindles. At the other extreme, applications
include very large industrial machinery such as compressors, turbines and engines [1].
The motivations for these applications vary, but most are inspired by the possibility of
precise control of the rotor through the magnetic bearing's active feedback loop. In the
case of high precision machine tools there is an obvious need for precise control of tool
position, and this control is made possible through the active magnetic bearing to a degree
not possible by using other bearings, even the stiffest of rolling element bearings. This
degree of control is possible even though the parameters of the bearing may not have been
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accurately assessed, because the active controller compensates for poorly known
characteristics by the exercise of negative feedback. Thus, even though the system is not
fully optimized, its performance may still far exceed that of passive bearings in terms of
accuracy of positioning.

The need for precision force generation is less obvious but no less crucial in the case
of large industrial machinery. In this case, the machines are so large and expensive, and
down-time is so costly, that it is essential to minimize vibration problems. Many of these
machines operate at speeds higher than one or two critical speeds, so vibration problems
can be intense, and the nature of these problems becomes successively worse as
performance demands are increased. The traditional approach toward minimizing vibration
is to design passive fluid bearings by choosing clearances and length-to-diameter ratios to
achieve the best possible effective stiffness and damping characteristics. Most of the
damping in these large vibrational systems arises from the bearings, and in passive
bearings there is always a trade off between damping and stiffness. In addition, most such
bearings give rise not only to principal restoring forces, generally desirable, but also to
forces that act normal to a perturbation direction. Depending on their signs, these forces
can be stabilizing or destabilizing. It is the nature of fluid bearings that in most practical
situations they are destabilizing. Thus the active magnetic bearing, which offers
controllable forces that are in theory uncoupled, has a strong appeal to the manufacturers

and users of such machinery.

1.1.1 Disadvantages

Magnetic bearings are not a panacea, however. There are significant drawbacks to
their use: magnetic bearings in general are larger and heavier than equivalent fluid
bearings, they require continuous control and an uninterrupted power supply and therefore
need redundant controllers and backup power capability, plus emergency backup bearings
for shut-down in case of complete failure of the active system. These disadvantages must
be weighed against the positive factors of reduced power losses, elimination of lubricant
supply system and controllability.

The disadvantages stemming from the size and weight factors may be minimized
with better prediction of the forces available from actuators, and the effects of geometry on
the available forces. Reliance on simplified theory for the forces available in an actuator
has probably led to overdesign of the components, and to a reliance on controller
robustness to compensate for inaccuracies in the force prediction. In practice the

installation of a magnetic bearing system in a large turbomachine has been found to require



a lengthy process of tuning both on the test stand and later in the field for each individual
machine

Better force prediction will allow optimization of the actuators themselves in an open
loop sense, shortening the tuning process and freeing the designer of the controls to
concentrate on higher orders of vibration control strategy To this end, the work described
in this report is concentrated on developing reliable and efficient methods of predicting the
forces exerted by magnets on a rotor. The work consists of both theoretical/numerical

analysis and experimental measurements of forces.

1.1.2 Background

This section describes the background and state of technology in magnetic bearings
largely as it existed at the start of this project. The following section contains limited
references to developments that occurred as this work proceeded.

The concept of suspending a machine part by force of magnetic attraction was
introduced as early as 1842 [2], and some early devices for magnetic support were
attempted using permanent magnets and electromagnets, but practical application of the idea
awaited relatively recent developments in control technology and power electronics.

Beams [3] in 1949 built a successful magnetic suspension device for a small diameter
rotor (1/64 inch) in order to achieve high rotational speeds. The system used vacuum tubes
for control and power amplification, and thus was limited to supporting only small masses.

The first application of fully active magnetic suspension was in the field of
aerodynamic research where a system was developed to support models in wind tunnel
tests [4]. This is a demanding application because the distances between the magnets and
the model are large, but the forces required may be small.

More recently, with the development of solid state power electronics and advances in
controls, more attention has been devoted to the possible applications of magnetic
suspension to industrial and laboratory machinery where large forces may be involved.
Nikolajsen, et. al. [5] reported on the use of an electromagnetic damping device for
controlling vibration in a flexible transmission shaft. Schweitzer, et. al. [6] considered the
application of magnetic bearings to vibration control of pumps and centrifuges, and
discussed the merits of centralized versus decentralized control [7]. The use of magnetic
bearings in a flexible rotor system was also considered [8].

A number of papers have been published beginning in the early 1980's on various
aspects of the control of shaft vibration and suspension by magnetic forces.

Allaire, et. al. performed theoretical studies of the effects of using a feedback actuator

on the unbalance response of a single mass rotor on rigid supports [9], and on flexible



supports [10]. The actuator was placed at the mass location and was represented by
feedback with gains proportional to shaft displacement and shaft velocity. It was found
that proportional feedback could be used to alter the critical speeds of the system over wide
ranges, and that derivative feedback could be used to change the amplitudes of vibration.
Combinations of proportional and derivative feedback significantly altered the system
characteristics in terms of both critical speeds and amplitude of response.

An experimental test apparatus for applying feedback control to a multimass rotor at
the bearing locations was constructed by Heinzmann [11]. The rig used actuators made
from the moving voice coils of loudspeakers, and the force was applied directly through
mechanical links attached to ball bearings on the shaft. Significant effects on the critical
speeds of the system were achieved by feedback control.

Kelm [12] computed the linearized stiffness and damping coefficients for a four-
magnet bearing, and measured the coefficients in an experimental bearing for a two-inch
diameter shaft. Precise agreement between predicted and measured values was not
achieved.

Connor and Tichy [13] have proposed an eddy current bearing that would generate
repulsive rather that attractive forces by inducing currents in the rotor.

Chen and Darlow [14] tested a magnetic bearing constructed by modifying an
induction motor stator and evaluated the effectiveness of two schemes for estimating
velocity and acceleration in the feedback control loop.

Walowit, et. al. [15] and Albrecht et. al. [16] analyzed and tested a magnetic thrust
bearing. Their analysis and experiment involved transverse misalignment of the plane
surface gaps but no angular misalignment.

Keith, et al. [17] have examined several aspects of proportional-derivative control
using a digital controller, and Maslen, et al. [18] consider some of the performance
limitations of active bearings.

Papers contained in the proceedings of the first significant international gathering of
researchers in the field of magnetic suspension of machine elements [19] address
applications, control, identification of parameters and other aspects of magnetic bearings
[20-22], as well as applications in space [23-24].

1.1.3 Developments During this Project
According to literature from magnetic bearing manufacturer S2M, as of 1991 a total of
more than 440,000 hours of operation had been accumulated by machines equipped with

the company's active magnetic bearings [25]. The 96 individual machines span a wide



range of sizes, from blowers in the 5 to 200 kW range up to industrial compressors in the
25,000 kW range.

Along with increased industrial application of magnetic bearings came significant
new research. The proceedings of the Second International Symposium on Magnetic
Bearings [26] contain 53 technical papers on various aspects of magnetic bearings, by
authors from 12 countries.

These papers address several areas of application, including momentum wheels for
energy storage [27, 28], electrospindles for boring, grinding and milling operations [29,
30, 31], as well as suspension of large industrial machine rotors such as those of boiler
feed pumps [32], pipeline compressors [33], and nuclear circulating pumps [34].

There continued to be a growing interest in control aspects, with papers devoted to
digital control [35, 36, 37] and amplifier design [38, 39]. Several philosophies of control
were examined, including centralized vs. decentralized control [40], automatic balancing
[41], and modal control [42, 43]. One method of approaching linearity in magnetic
suspension systems is to apply large bias currents, upon which are superposed the control
currents. Higuchi et al. [37], however, used a digital control scheme to effect a
linearization of the magnetic bearing properties without using large bias fluxes.

Herzog and Bleuler [44] proposed the use of H* control to achieve required
stiffness over wide bandwidth, and Fujita et al. [45], seeking a robust control design,
implemented H* control using a commercial digital signal processor. Experiments
indicated that the system was highly stable when subjected to step disturbances.

Ueyama and Fujimoto [46] physically measured the iron losses due to hysteresis and
eddy currents by monitoring the coastdown of a rotor suspended in magnetic bearings, at
different values of coil current, and propose an empirical equation to represent these losses.

Zhang et al. [47] describe a magnetic bearing application in which the rotor is a thin
flexible shell, and discuss the advantages of individual magnet control versus control of
opposing magnet pairs. They conclude that improved damping is possible using the
individual magnet control. The authors speculate that the method will also be advantageous
in suspending travelling metal sheets.

Stability of a suspended rotor was considered by Chen et al. [48], but as in previous
such analyses, the representation of the magnetic forces is based on a linearized model.

Of particular interest in the context of the present project, Satoh et al. [49] examined
a self-excited vibration of a suspended rotor in a flexible structure. The authors concluded
that interactions between the mechanical structure and nonlinearity of the electromagnets led

to a vibration with two frequency components.



A recent meeting devoted primarily to magnetic bearings was ROMAG'91,
organized by the University of Virginia and held in Alexandria, VA in March 1991. In
addition to considering applications in turbomachinery, some presentations also dealt with
use of magnetic suspension in vibration isolation, particularly in applications related to
space experimentation [50, 51], although one paper presented a digitally controlled
magnetic suspension and vibration isolation system for optical tables [52].

With regard to magnetic bearings for turbomachinery, a number of applications were
discussed, ranging from canned pumps to gas turbine engines [53] and rocket engine
turbopumps [54].

Again, considerable emphasis was placed on control aspects, with papers devoted to
the effects of sensor location [55], effects of amplifier design [56] and the general
controllability of flexible rotors [57].

Subsequent meetings have explored a number of these aspects in greater detail. These
include the Third International Symposium on Magnetic Bearings [58], and Mag ' 93 [59].
While the papers in these meetings address progressively more sophisticated control
strategies, in much of the work presented, variations on a one-dimensional force model are

used.



2. TECHNICAL FINDINGS: Analytical/Numerical Modeling

The objective of the modelling is to calculate the force exerted by the magnets on a
Journal in the case of steady currents through the coils. The techniques needed for this
computation can also be applied to calculation of force in the dynamic case if the problem is
assumed quasi-static in a magnetic sense. It is expected that this will be appropriate in
most magnetic bearing applications, since the principal requirement for this assumption is
that the frequencies of current and field variations do not approach radio frequencies.
Some correction may be necessary to account for eddy current effects, which are neglected
in the present work, if these methods are applied to the rotating shaft case.

The results of this section are also described in the Ph.D. thesis of Xia [60].

2.1 Fundamental Principle
The principle of force calculation is that the force component in a given direction is

equal to the negative of the rate of energy change with respect to that coordinate, that is,

F, = -0U (2.1.1a)
Ox
F, =-3U (2.1.1b)
dy
where the energy U is the energy associated with magnetic flux density contained in the
magnetic circuit
U=é—f B Hdv (2.1.2)
\'%

where B is the magnetization and H is the magnetomotive force. If the linear
approximation is made that B = p H, then this may be written.

U=:L| B2av (2.1.3)
2u v
Development of the force model proceeded in two stages. The first method that

was developed considered only the energy in and near the air gaps, approximating the
metals as infinitely permeable. This method is referred to subsequently as the air gap
method. It does account for nonuniform gap geometry as well as nonuniform distribution
of flux within the gaps. The second method, referred to below as the full magnet method,
includes the energy in the metal of the magnet and a portion of the rotor as well as that in
the gaps and nearby air regions. Nonlinear magnetization functions can be considered as

long as they are single-valued.
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Both methods rely on two-dimensional finite element calculations of flux
distributions. Computations are performed for one magnet at a time, and interactions of

flux loops of individual magnets are neglected.

2.2 Air Gap Method

A computer program was written that calculates the force exerted on the journal by
a magnet having a steady current in its coils. The force is found by calculating the energy
stored in the air gaps between the magnet and the journal, then performing a numerical
perturbation to obtain a central difference of the energy change per unit position change.
This gives the force in the direction of the perturbation.

The force for a magnet at an arbitrary location can be calculated. The calculation

includes the following assumptions:

i. The permeability of the metal is infinite compared to that of the gaps, which is
assumed equal to that of free space. This implies that all the energy is stored in
the gaps.

ii. There is no flux leakage, but expansion of the flux lines beyond the gap edges

is allowed.
iii. The coil current, therefore the MMF, is constant over a perturbation.

In an isotropic domain not containing currents, where time variations are only of
low frequency, the magnetic field can be represented as the gradient of a scalar field ¢(x,y).

The energy contained in the domain is given by Equation (2.3) above where the

flux density B is given by

B=-Vo (2.2.1)
and the potential ¢ satisfies the governing equation
V=0 (2.2.2)
with the boundary conditions
—g% = ( on free boundaries (2.2.3)

and, because of assumption (i) above
¢ = @1 on pole face 1

¢ = @, on pole face 2 (2.2.4)
¢ = 0 on journal surface

as shown in Figure 2.2.1.



Figure 2.2.1
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Initially the boundary values of ¢ on the pole faces, @1 and @7 , are not known,
but must be determined in relation to the datum of ¢=0 on the journal surface. The problem
is made tractable by the fact that the governing equation is a linear one, so that the values of
¢ internally are determined within a multiplicative constant even for an arbitrary choice of
boundary condition values. The fact that the flux must be the same through the two gaps
allows the ratio
)

D,
to be determined. Then the fact that the difference between the two potentials is the

" (2.2.5)

magnetomotive force,

Py-Po=( (2.2.6)
allows determination of the actual surface potentials. The variables are nondimensionalized
so that @ = 1. The procedure is as follows:

a. At an unperturbed position A, start with @4 = 1, ®>* = 1. An asterisk
represents an initial guess or a calculated value based on an initial guess.
Later the ratio

D P

K=
*
D P

(2.2.7)

will be found.

b. Solve for the distribution of ¢ in each gap based on these boundary
conditions: ¢1, ¢2*. Note that ¢ = kd,*.

¢. Calculate the resulting flux density distributions and the energy stored in
each gap, plus the flux through each pole face

Yi= 0014 (2.2.8)
on
Ay
%
* -0ty 1
=] —dA =2y (2.2.9)
2 on K
Ag

d. Since the actual dimensionless fluxes are the same magnitude (Y} = —y;),

K is uniquely determined as the ratio

= Y_i (2.2.10)
Y2
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. The potential distribution in gap 2 is given by ¢ = k¢»™ and the flux

density is related to the * distribution by the same ratio. The energy is

therefore given by
2 ®
02 = K0, (2.2.1D
Note that the imposed mmf is the difference between the pole potentials
{=01-Dr=(1-K)D4 (2.2.12)
or, since ®y =1,
= (1-%) (2.2.13)

(If dimensional values are needed, the factor (1 - k) is also the ratio

between mmf in amp-turns and the dimensional potential on pole face 1).
For now, use the nondimensional .

. At a perturbed position B, start with @1" = 1, ®o** = 1. The potential

on pole 1 is now a guess, since only the mmf was maintained constant
during the perturbation. @; ** is a "double" guess because it is based on

D

. Use a procedure analogous to steps b through f to find the ratio

r=22 (2.2.14)
@

Use the calculated mmf { from step f above, which is still equal to the

difference between the pole potentials, to write

O =-5 (2.2.15)
1-A
and define
%
a=21- %2 (2.2.16)
o Dy

Using the logic of step e

o1 = olo, (2.2.17)

and
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o2 =020 " (2.2.18)
k. Stored energies have now been calculated at position A and position B. A
forward difference analogue to the force in the direction from A to B is

therefore

Fpp = (01102} = (O1+02)a (2.2.19)
AxaB

l. To return to dimensional values, use the factor (1-x) from step f above.

Although the description above uses a forward difference, a better result is obtained
using a central difference, which is the method actually employed. This requires 4
perturbations to find the vector components of force in the x and y directions.

Although the calculation of forces with the inclusion of three dimensional effects,
flux leakage and hysteresis will involve significantly more computations, the overall
approach should be the same as that used above. It may be necessary to use a vector
magnetic potential, and the assignment of boundary conditions will be considerably more

complex, however.

2.3 Air Gap Method: Computer Program

The algorithm above is embodied in a FORTRAN computer program, GAPFOR1,
which uses the finite element method for calculating the magnetic potential in two
dimensions. For a given journal position the program calculates the gap height as a
function of angular location and generates a finite element mesh for each gap. Flux
fringing is allowed by extending the finite element domain beyond the edges of each pole
face. Then the journal position is perturbed four times, first with positive dx and negative
dx, then with positive dy and negative dy. At each step the mesh is regenerated and the
energies are recalculated.

To achieve rapid computational speed and efficiency, a dedicated finite element
program was written for this application. It includes a grid generation routine as well as a
banded gauss elimination solver for the assembled equations. A listing of the algorithm is

given in Appendix A.
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2.4 Air Gap Method: Results
2.4.1 Test Case 1: parallel surfaces

The algorithm was tested by calculating the force in the case of a magnet and part
having parallel faces, with no flux fringing allowed, shown in Figure 2.4.1. In this case
an analytical expression approximates the force per unit depth of pole face as

2.2
Ay N
F="e = : (2.4.1)
hg
where F = force

Hg = magnetic permeability of the gap
Ag = area of the gap

N = number of magnet coils

1 = current
h =  gap height

The computer program was run for the slightly different case of an annular clearance
between a shaft and a magnet, corresponding to the case of a centered journal. For the
sample case the equation gives F = 22.4 N, while the program predicts F = 20.9 N.

2.4.2 Test Case 2: Effects of element size and fringing

The algorithm was used to calculate the force from a single magnet acting on a
journal, as in the experimental apparatus. The dimensions are given in Table 2.4.1. The
effects of variations in element size were examined along with the effects of allowing
fringing to occur by extending the domain of solution circumferentially beyond the ends of
the pole faces as shown in Figure 2.4.2. Table 2.4.2 shows the results of these variations.
The column A displays results without fringing, while column B shows results with
fringing allowed in a domain extended 10% of the width of the pole face to either side.
The results indicate that without fringing, the effect of decreasing the element size is small,
but when fringing is to be accounted for, the element size is a significant parameter. The
results of column B suggest that when fringing is allowed, the predicted force is smaller
than when fringing is not considered. This might be expected, since fringing decreases the
average flux density by increasing the volume of the energy storage area. Since the energy
is related to the square of the flux density, an overall decrease in stored energy and in force

seems appropriate.

2.4.3 Forces from one magnet of a bearing
The computer program has been used to predict the forces from one magnet acting
on the journal at various positions of the journal within the clearance space. Half of the

entire clearance space is mapped, since all positions of the journal with respect to a single



_ magnet
13.
o :3;"1:‘ 19.05 mm
0.76 mm - - (0.75 in.)
(0.03 in.) : I
current: i=1 A
N=200+200

turn:
magnetomotive force: mmf=400 turn-A

Analytical solution for a flat surface
by approximate equation
Fy=22.4 N (5.04 1b)

Numerical solution for annular clearance
Fy=20.9 N (4.70 1b)

Comparison of numerical and approximate analytical solutions for one

Figure 2.4.1
magnet.
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GRID
n=10 circumferential divisions
_ m=5 radial divisions
— ] AX=0.2X
J ( to allow fringing)
i
rotor

Figure 2.4.2 Sample grid (radial dimension exaggerated).

Pole depth 10.1 mm 0.750 in
Pole width 13.6 mm 0.534 in
Gap height 0.76 mm 0.03 in
Anglebetween poles 40°

MMF 400 A-T

Table 2.4.1  Parameters for sample calculations.
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magnet can be represented in terms of positions in this half space. Figures 2.4.3 and 2.4.4
show maps of force versus x,y position. The magnet is the upper vertical magnet, and a
steady

Attraction Force from One magnet Using Finite Simplex Method

Design Parameters:

R =38.1 mm
¢ =0.76 mm
L=19.05 mm

01 = 60°, 62 =800, o =20°

A B
No Fringing  With Fringing
Case m n elements global matrix Fy Fy
1 8 20 320 189 x 11 20.925 21.220
2 8 70 1120 639x 11 20.927 20.635
3 8 150 2400 1359 x 11 20.927 19.881

Table 2.4.2 Effects of element size and fringing

current of 1 ampere through the coils is used. The dimensions and other parameters are the
same as those of the experimental apparatus described below. The figure indicates that the
force in the y-direction varies between 0 and 132 N as the journal is moved along the y
axis. When the journal is also given an x-direction eccentricity, the y-force decreases
significantly. Except at x=0, there is also a small x component to the force, shown in
Figure 2.4.4.

In a subsequent section the predicted forces are compared with those measured in an

experimental apparatus.

2.5 Full Magnet Method

Unlike the previous method the present section considers the magnetic flux within
the metals in addition to that in the air gaps. This allows the examination of effects such as
local magnetic saturation of the materials and residual magnetization. This approach
presents two categories of difficult problems, however. The first category arises from
consideration of finite permeability, which in the general case is a nonlinear and
multivalued function of field intensity. The second is related to boundary conditions on

magnetic field quantities, and a third concerns the source, or current density, term of the



19

SUSPENSION FORCE FY(N)
R=1.5 INCH C=0.03 INCH MNF=200+200 T-A
XxB=X/C YB=Y/C

0.64

Figure 2.4.3 Vertical force of attraction from upper magnet with 1A current, by numerical

calculation.
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SUSPENSION FORCE FX(N)
R=1.5 INCH C=0.03 INCH MNF=200+200 T-A

c=0.03IN
XB=X/C YB=Y/C

Figure 2.4.4 Horizontal force of attraction from upper magnet with 1A current, by

numerical calculation.
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governing equations. First the forms of the differential equations will be presented and
then approximations and assumptions will be introduced to simplify the equations.

2.5.1 Differential Equations in 3-D
In the general three-dimensional case, the flux density ﬁ, the field H and the

current density T are related by

VxH=1] 2.5.1)
B =pH (2.5.2)
VB =0 (2.5.3)
where
w=uddLo (2.5.4)

Assuming that a solution for B in all parts of the domain can be found, the method

of force calculation described in Section 2.1 can be applied.

2.5.2 Two-dimensional Equations

For the next phase of the analysis, the solution domain is simplified from three
dimensions to two dimensions. Successful finite element solutions for magnetic flux have
been obtained in two dimensions (Chari and Silvester [61]) for cases of single valued
permeability by making use of Equation (2.5.3) to write the flux density, or magnetization,

vector as the curl of a vector magnetic potential

B=VxA (2.5.5)

This equation is valid in three dimensions, but is more easily applied if the magnets and
rotor are treated as infinitely long and the current is assumed to pass only in the coils of the
magnets. Under these approximations both the vector potential and the current density
have only one component (z), and Equations (2.5.1), (2.5.2) and (2.5.5) can be combined
to write

IA oA

el il

dax2  0dy2
where A and J are magnitudes of the corresponding vector quantities. For given L and J

i (2.5.6)

distributions and appropriate boundary conditions, this Poisson's equation can be solved
by finite difference or finite element methods. In the present work the current density is
assumed uniform within the coil windings and zero elsewhere. The coils are treated as

isotropic solids, as shown in Figure 2.5.1.



- Current density J
| Current density -J

Figure 2.5.1 Modelling of coils with uniform current density
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At this point the two most difficult problems arise; determination of permeability

and assignment of boundary conditions.

2.5.3 Permeability

In general, the permeability of a ferromagnetic material is a nonlinear, multivalued
function of field intensity and, through the history of the field strength, of time. The
magnetization of the material is often represented by the hysteresis loop (a) of Figure
2.5.2, adapted from Cullity [62] which shows the relationship between H and B for a
particular time variation of H, namely a cyclic completely reversed variation that is
sufficiently strong to cause the material to be saturated alternately in both directions.
Although this figure gives some qualitative insight into the material's behavior, it does hot
fully characterize the response of a magnet to other types of time varying excitations. In
fact, for an excitation H that does not fully saturate the material, the curve traced by the B
function might take one of several other forms shown in Figure 2.5.2, depending on the
material and the range of H.

For analytical purposes, it is most convenient to assume a linear variation of B with
H, or a constant permeability ( (a) of Figure 2.5.3). For this assumption the solution of
Equation (2.5.6) is straightforward and obtainable by a direct method. Next in complexity
is the consideration of B as a nonlinear but single valued function of H, as in (b). An
iterative method is now required for the solution. In addition, the calculation of the energy
in the magnetic field, Equation (2.1.2), requires integration using the actual magnetization
function. The most general case, that where B can take on an infinity of values,
depending on the history of H, is not considered in the present work. Therefore, in this

report calculations are limited to single-valued functions of B vs. H.

2.5.4 Boundary Conditions
Far away from the magnets and rotor it is reasonable to assume that the magnetic

flux intensity B is zero, which implies that
a—A = E—)é =0 (2.5.7)
dx oy
It is feasible to extend the solution domain far enough to approximate this condition.
Numerical studies of the effects of domain size were made as part of the analysis, and it
was noted that the penetration of magnetic flux into the rotor is limited. A sample

discretization is presented in Figure 2.5.4, where the boundary conditions given by



Figure 2.5.2 Possible B-H loops in a real ferromagnetic material.
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Figure 2.5.3 Altern

ative models for magnetization

characteristic.
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Figure 2.5.4. Example of modified direct discretization of portion of domain.
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elements i the gap. The Principaj difﬂculty IS in Dumbering the nodes of the fine grid jp
the gap region so that Connectivity jg established between the fine grig elements ang the

metals, regardjegs of the Specific type of bermeabiljty model to pe used.
Two options were considered for the actya] force calculation One is based on the



I=1A
x = 0.0in.

y =-0.0241in.
Extra boundary 20 %

within the pole area

mXxXn

2X5
2X 15
2X20
2X 30

4X5
4X 15
4X20
4X 30

6X5
6X 15
6X20
6X 30

8X5
8X 15
8X20
83X 30

2X5
4%5
6X5
8X5

2X30
4X 30
6X 30
83X 30

Table 2.5.1

Force (N)

7.334
6.557
6.361
5.981

7.397
6.854
6.729
6514

7.409
6.933
6.845
6.696

7.413
6.964
6.894
6.783

7.334
7.397
7.409
7413

5.981
6.514
6.696
6.783

Divisions and parametric study of grid size effects in gap region.

mzs{

10 £ with the fine elements

Difference between the largest
and smallest forces

1.353

0.883

0.713

063

0.079

0.802
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Figure 2.5.5. Example of variable density grid after Cavendish.
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position followed by calculation of the forces based on changes in energy using a central
difference approach, including the energy change due to flux distribution changes during
the perturbation. In the case of larger domains having nonlinear permeability the
computation time for this method would be large. The second method, which was actually
adopted, holds the flux distribution constant and calculates the energy change due to the
area changes of all the elements that are distorted during a perturbation. This method is
much faster than the full numerical perturbation scheme, and has been shown [67] to have

high accuracy.

2.6 Results of Linear Calculations

In Section 2.2, a method was described to calculate forces using a linear method, in
which the air gaps only are treated and the flux distribution is calculated by the Laplace
equation for the scalar magnetic potential. Results of calculations using this method were
presented in Section 2.4. In Section 2.5, the linear method was extended to include
regions of differing permeabilities, using the Poisson equation for flux distribution. The
present section presents results of these calculations, along with experimental
measurements. For a description of the experimental apparatus and methods, refer to
Section 3. In that section, some of the calculations presented here will be shown again.
The work presented in this section is also described in the paper "Determination of Forces
in a Magnetic Bearing Actuator: Numerical computation with Comparison to Experiment,"
by Knight, Xia, McCaul and Hacker [68]. Only the Conclusion section of the paper is

reiterated here.

Conclusion (of Reference [68])

Calculated and measured forces in a magnetic journal bearing actuator
are presented. The calculations are based on two-dimensional finite element
solutions of the magnetic flux distribution in both metals and free space. The
measurements were made in an apparatus designed for direct force
measurement by strain gage transducer assemblies supporting a non-rotating
journal.

Comparison of numerical calculations with one-dimensional magnetic
circuit theory indicates that as the gaps are made non-uniform by the approach
of the journal to the magnet, two dimensional effects become significant and
the two methods predict different forces. At relative permeabilities above
104, changes in permeability of the metal have little effect, but at lower
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permeabilities the available force decreases dramatically with decreasing
permeability.

Also predicted is that the effect of finite metal permeability is more
strongly felt at small gaps than at large gaps.

The calculated principal attractive forces agree well with the measured
forces when a relative permeability ur = 500 is used, corresponding to highly
saturated material. The measured normal forces, however, are higher than the
calculated values even when a high permeability is used.

It seems reasonable that the permeability distribution in the metal is
non-uniform. Future work is planned in which distributions of permeability

will be examined.

After the submission of this paper, the numerical method was extended to model

nonlinear distributions of permeability.

2.7 Nonlinear Force Calculation

An algorithm was developed to calculate the force exerted on a rotor by a magnet,
considering the effects of a nonlinear magnetization characteristic for the rotor and magnet
material. It uses the finite element method to solve the equation for vector magnetic
potential in two dimensions. The force calculation part of the algorithm is based on the fast
solution method proposed by Coulomb [67]. There are three primary operations involved
in the force calculation: (a) modelling of the magnetization curve of the magnet and rotor
material, (b) iteration for the distribution of vector magnetic potential consistent with the
nonlinear permeability, and (c) application of the force calculation algorithm. These
operations are outlined briefly below, but more complete descriptions of the methods are
given in Appendix C.

This work is also described in a paper, "Forces in Magnetic Journal Bearings:
Nonlinear Computation and Experimental Measurement," by Knight, Xia, and McCaul
[69], presented at the Third International Symposium on Magnetic Bearings, Alexandria,
VA, July 1992, and contained in the proceedings of that meeting.

2.7.1 Modelling of Magnetization Curve

For most of the calculations presented here, the magnetization function for silicon steel
[62] has been used. Some calculations were also performed using an arbitrarily chosen
function having sharp discontinuity in slope, to assess the effects of abrupt saturation.
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The magnetization function of the steel is nonlinear but single-valued; that is it does
not exhibit hysteresis. The function is represented by tabular data and is approximated by a
cubic spline interpolation. At field intensities higher than 1200 A-t/m, the slope of the
magnetization function is assumed to be the permeability of free space, L. Figure 2.7.1
shows the actual magnetization data and the approximation.

For numerical calculations, a more useful representation of the magnetization function
is that of Figure 2.7.2. The reluctivity of the material, H/B, or 1/, is plotted versus the
square of the flux density. When this representation is used it is not necessary to calculate
the field intensity at each location for every iteration, but only the flux distribution.

2.7.2 Calculation of Flux Distribution

The distribution of scalar magnetic potential, leading to the distribution of flux density,
is calculated by the finite element method. The equation that models the potential is the
nonlinear Poissons equation

i(ie’_A)+i(La_A -] 2.7.1)

ox \lL ox [ 9y \u dy

where A is the magnitude of the vector magnetic potential, which in the two-dimensional

case has only one component , normal to the plane of the solution region. The flux density
is related to the potential by

B=VxA. (2.7.2)
This relationship allows a convenient representation of flux density, since it implies that
contours of constant A are also lines parallel to B.

The source term J, current density, appears in those elements comprising the cross
sections of the coils. The value of the total ampere-turns is divided by the nominal cross-
section to arrive at this current density.

An iterative method is used to obtain a distribution that is consistent with the nonlinear
magnetization function. The procedure is that recommended by Silvester [70], in which a
Newton-Raphson iteration is applied to determination of the reluctivity. An initial
approximation to the potential is made, then updated based on successive solutions of the
Poissons equation for incremental changes in the A field that result from refinement of the
reluctivity distribution.

When the flux distribution has been determined, the calculation of forces is performed
using the method of Coulomb [67], in which only the energy changes in the distorted
elements are considered during a virtual displacement. The method allows the force to be
determined without multiple solutions for the flux distribution

Appendix C describes the numerical methods in more detail.
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2.7.3 Results of Calculations

Calculations were performed based on the geometry of Figure 2.7.3, corresponding to
the first experimental apparatus and the measurements described in [71]. The magnet
under consideration is an upper vertical magnet, so forces in the y-direction are the
principal forces, and forces in the x-direction are the normal forces. Also plotted in the
figures are the results of the linear calculation described in previous reports and in [71].
The effect of saturation on the force is seen in Figure 2.7.4, which shows the attractive
principal force as a function of the coil current, when the shaft is in a centered position with
respect to the magnet pole faces. The gap between shaft and magnet poles is therefore
constant at 0.03 inch. The dimensionless force is seen to increase with current, and below
acurrent of 2.5 A (corresponding to 1000 A-t) the result of the nonlinear calculation is the
same as that of the linear calculation. Above this value the force continues to increase, but
at a much smaller rate than predicted by linear theory.

At current levels higher than 3 A the magnet material experiences saturation near the
inner corners of the intersection between the pole legs and the magnet outer arc. As the
current level is increased, the area of saturation expands across the cross section of the
legs. Figure 2.7.5 shows those elements that have been saturated for the case of i = 3.5 A.
At this level of MMF the area of saturation encompasses a complete layer of elements
spanning the cross-section. For purposes of this plot, saturation is defined to correspond
to a flux density of 1.4 T. At this point the slope of the magnetization function is assumed
to be that of free space, so above this level of flux density the force can continue to increase
with current, as indicated by Figure 2.7.4, but at a much slower rate.

For a given MMF the magnet may also experience saturation when the shaft is moved
closer to the magnet. Such a displacement decreases the overall reluctance of the magnetic
circuit by closing the gaps, and changes the gap shape as well. Figures 2.7.6 to 2.7.8
show the increase in number of saturated elements when the shaft is moved toward the
magnet, for the constant current i = 2.0 A. Figure 2.7.6 corresponds to a shaft eccentricity
of (X,Y) = (0, 0.5), which denotes a position on the magnet's axis of symmetry, half the
distance from the center to the maximum possible eccentricity. There are two areas where
elements are saturated; the inner corners of the horseshoe, and the part of the shaft near the
inner edges of the pole faces. These edges are the points of closest proximity between the
poles and the rotor. As the shaft is moved closer to the magnet the areas of saturation
enlarge. At an eccentricity of 0.6, Figure 2.7.7, the upper ends of the pole legs have been
completely saturated, and the area of saturation at the rotor surface has expanded. As the
eccentricity is further increased to 0.7, Figure 2.7.8 shows the saturation areas continuing

to expand. The contour plot of Figure 2.7.9 reflects the saturation pattern. Comparison of
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Figure 2.7.4 Calculated principal force on centered shaft.
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Saturated Elements
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Figure 2.7.5 Distribution of saturated elements at 3.5A current, centered rotor.
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Figure 2.7.6 Distribution of saturated elements at 2.0A current, with vertical

displacement of 1/2 clearance.
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Saturated Elements
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Figure 2.7.7 Distribution of saturated elements at 2.0A current, with vertical
displacement of 0.6 clearance.
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Figure 2.7.8 Distribution of saturated elements at 2.0A current, with vertical
displacement of 0.7 clearance.
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Figure 2.7.9 and Figure 2.7.10, which is the potential distribution obtained by a linear
solution, shows how the flux distribution has changed in order for the flux lines to
maintain a minimum curvature and to follow the easiest path, while minimizing local
concentrations. The effect on the force is illustrated in Figure 2.7.11, where the nonlinear
calculation is compared with the linear solution using a relative permeability of 5570
(corresponding to that of silicon steel at very low field intensity). Above an eccentricity of
0.4, the force continues to increase, but at a much lower rate than predicted by linear
theory.

Asymmetry in the distribution of saturation develops when the rotor is given an
eccentricity away from the magnet's symmetry axis. Figure 2.7.12 shows the saturation
pattern when the shaft is moved to the right, to a position (0.45,0.7), a large eccentricity.
The rotor near the inner corner of the left leg is saturated, as well as almost an entire layer
of elements near the right leg. The saturation region at the upper ends of the legs has also
changed slightly from that of Figure 2.7.8. Figure 2.7.13a shows the potential distribution
for this case. Comparison with Figure 2.7.13b, which is the potential distribution obtained
by a linear solution, illustrates the effect of saturation in excluding some of the flux from
the corners and increasing the fringing at the poles.

The force in the normal direction is plotted in Figure 2.7.14 for one value of off-axis
eccentricity, as a function of the y-position (along the symmetry axis). This force also is
predicted to deviate from the linear theory above a y-displacement of 50 % of the clearance.

The ratio of normal force to principal force for this same normal eccentricity is plotted
in Figure 2.7.15. Curves are shown for the nonlinear theory as well as for the linear
theory at two different relative permeabilities, in addition to the experimental results.
Although the nonlinear theory does not reflect the magnitudes of the ratio very accurately,
the trend is appropriate: the nonlinear theory does indicate a very slight increase in this
ratio as the eccentricity is made larger. The magnitude of the difference, however, is so

small that it may not be significant in view of the numerical solution mett.od.
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Figure 2.7.11 Principal force as a function of the principal coordinate.
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Figure 2.7.12 Distribution of saturated elements at large eccentricity with normal
component.
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Figure 2.7.14 Normal force at normal eccentricity of 0.45 .
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Figure 2.7.15 Ratio of normal to principal force at large normal eccentricity.
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2.8 Effects of Uncertainties and Property Variations

In earlier results, numerical calculations of forces using the nominal geometry of
the experimental apparatus did not predict accurately the magnitudes of the normal forces.
The measurements were in all cases considerably larger than predicted by calculation.
Recent calculations have attempted to address the issues of uncertainty in the pole face
geometry on the forces. The nominal geometry of the apparatus is shown in Figure 2.8.1,
along with one possible type of geometric error. Suppose that each of the pole faces, while
still consisting of a circular arc, is rotated a small amount from its nominal orientation.
This rotation is distinct from the angular uncertainty described in section 2.2 above. This
type of error, or an error of similar magnitude, might result from tolerances in machining,
but would be unlikely to result from assembly errors.

Figures 2.8.2, 2.8.3 and 2.8.4 show the results of several series of calculations.
Each figure is based on the same set of shaft positions and presents the force from one
magnet when the shaft has a large normal eccentricity, as a function of position on the
principal coordinate. These data are most easily compared with data from the first force
measurement apparatus, because of the sequence of measurements. The four curves
illustrate the effects of two different magnitudes of error in pole face orientation, 0.5° and
1.0°. These correspond to movement of the outer corner of each pole face a distance of
0.004 inch or 0.009 inch toward the shaft. A change of 0.59 therefore represents 15 % of
the radial clearance. The effects of these changes on the calculated forces is shown for the
case using the nominal magnetization function for the material, with a saturation flux
density of 1.4 T (curves 1 and 4), and for the case using a saturation flux density reduced
by 20 %, to 1.14 T. As a reference, the result for the linear calculation with no error in
pole face geometry is included.

It is seen that the effect of this geometry change is to increase both the principal and
normal forces, with a larger angular change causing larger forces as long as the nominal
saturation flux density is maintained. The ratio of normal to principal force also increases.
For an angular error of 19, the ratio of forces has approached the ratio that was measured

When the calculation is performed using the lower value of saturation flux density,
however, the result is similar up to the point where saturation is felt, then the ratio between
the forces decreases with increasing principal coordinate. It is reasonable that a
combination of geometric error and saturation flux density level can produce the force ratio
observed in the experiment.
experimentally. In contrast to the experiment, however, the ratio shown in Figure 2.8.4

increases with principal coordinate, while the measurement does not indicate this trend.



Nominal position

Displaced position

Figure 2.8.1

Schematic of possible error in pole face orientation.
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Figure 2.8.2  Effect of rotation of pole faces on calculated principal force.
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Figure 2.8.3 Effect of rotation of pole faces on calculated normal force.
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Figure 2.8.4  Effect of rotation of pole faces on calculated force ratio.
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2.9 Conclusions (Analytical/Numerical)

Principal conclusions drawn from this phase of the work are: (1) that the distribution
of saturation in the magnet core and the rotor influence both the principal attractive force
and the force in the normal direction, (2) that the normal force measured experimentally is
several times as large as the magnitude predicted at present by either linear or nonlinear
theory, but that (3) the trend of nonlinear theory to predict larger normal forces ip relation

to principal forces is appropriate.
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3. TECHNICAL FINDINGS: Experiments

Two different types of experimental apparatus were constructed to measure directly
the forces exerted between magnets and shaft in the nonrotating case.

The first apparatus was made using a solid disk to approximate the rotor, and solid
core magnets. This apparatus made use of strain gage instrumented support arms for the
disk in order to measure the force directly.

The second apparatus was made with laminated disk and magnets, and used the
principle of a calibrated deflecting beam to measure the forces indirectly.

Measurements of force on a stationary, non-rotating shaft were made as functions of
position and current and the forces have been compared with corresponding numerical
predictions. Where appropriate, measurements from the two rigs were also compared, and
were found to be consistent with each other.

These apparatus and results are also described in the M.S. thesis of E. McCaul [72].
3.1 Magnet Apparatus I

Table 3.1.1 lists the design parameters of the apparatus for direct force measurement,

Figures 3.1.1 and 3.1.2 show schematics, and Figure 3.1.3 shows an exploded view .

Rotor o.d. 0.076 m 3.00 in
Support shaft o.d. 0.016 m 0.625 in
Support shaft length 0.15m 6.0 in

Magnet i.d. 0.0777 m 3.06 in
Magnet depth 0.019 m 0.51n

Shaft clearance (diam) ~ 1.52 mm 0.06 in
Pole width 0.013 m 0.51n

Leg length 0.019 m 0.75 in
Coils 200 turns/leg, #22 copper

Pole separation angle 400
Magnet centerlines 00 900 180° 2700

Table 3.1.1 Design parameters of experimental apparatus I




N NN
.

o O
proxinity
probe
pole face

~

positioning
micrometer

N

/

rotor

strainguage
arm

Figure 3.1.1 Schematic of experimental apparatus L.
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Figure 3.1.2 Dimensions (inches) of experimental apparatus L
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The magnets and the journal are cut from disks of solid 1020 steel. They are placed
between two side panels that are laminated from 1/16" aluminum pieces. The magnets are
held in place by locating pins that are press fitted into through holes. The hole positions
were located prior to the cutting of the magnets from the solid disk. In this way careful
control of the radial clearances and angular positions of the magnets was maintained.

Each magnet is independent and is wound with 400 turns capable of carrying current of
2.0 A in the steady state. The original design based on a sandwich construction was
intended to allow flexibility in mounting magnets of different materials. In the steady force
measurement mode, the rotor is held stationary by pressure from six micrometer heads
(three on each end) that are in turn held by cantilever arms instrumented with strain guage
bridges. Thus all mechanical force on the rotor passes through the strain guage arm
transducers, and ideally all of the force on each micrometer tip is purely radial. In fact, it is
likely that the transducer arms exert some force in the tangential direction because of static
friction between the pusher tip and the support disk. Such force would not be sensed by
the transducers, which are designed to measure only forces that cause bending moments.
Attempts were made to minimize any frictional force by adding Teflon ball sockets with
steel spheres between the pusher micrometers and the support disks.

Despite the difficulties encountered, a number of successful force measurements were
made and useful conclusions have been drawn. Measurements from the second apparatus

tended to confirm those of the first.

3.1.1 Method of Measurement
Measurement of the force at a given location x,y within the clearance space requires
several steps:

i. Establish a datum position relative to the magnet from which the force is to be
measured. This requires placement of the rotor in contact with the magnet along
the inner corners of the pole faces. Visual alignment of the rotor is followed by
application of a small steady current to the magnet to assure contact. The datum
readings are then taken from the eddy current probes located at 450 to the vertical.
Ideally, one datum would be sufficient for all positions and all magnets, but in
reality because of machining tolerances and assembly allowances, the magnet
pole faces are not located on a perfect circle. Measurements can only be made
relative to one magnet at a time, therefore, and a separate datum is required for

each magnet. This datum can be used for all positions relative to this magnet.
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ii. Place the rotor in the desired position by adjusting the micrometer pushers,
repeatedly computing the position from the probe readings and correcting as
necessary. When the rotor is in position, all strain guage arms should be under a
slight preload.

iii. Take readings of the strain guage voltages without current through the magnets.
These will serve as datum values that contain all preloads including the rotor
weight.

iv. Apply the desired current to the magnet. Take readings of the strain guage
voltages and the position probe readings.

v. Compute the position from the probe readings and the forces from the strain
guage voltages after subtracting the datum values.

vi. Apply an alternating current to the magnet coils to remove residual magnetization
and return to step il.

The intent was to automate the entire process of data taking and force calculation by
using a microcomputer and digital data acquisition. Difficulties with the commercial A/D
hardware, however, forced the use of manual data taking for this phase of the work. The
raw outputs from the strain guages and position probes are processed using the same type

of software as that intended for the automated process, but the data were entered manually.

3.2 Results of Measurements, Apparatus 1

Forces were measured at several locations and for several values of steady current.
The figures referred to below display dimensional data as measured, with forces in
Newtons plotted against y/c, the eccentricity ratio in the vertical direction. All of the forces
measured in this apparatus are from the lower vertical magnet, so the vertical forces are in
the negative y-direction. The eccentricities in the x-direction are all positive. Three
traverses of the y-direction were made, at x/c positions of approximately 0.0, 0.24, and
0.45. Assessments of the errors in measurement are not complete; however, it is expected
that the error in position measurement is no greater than plus or minus 0.05 in y/c and x/c,
and that the error in force measurement is no greater that plus or minus 5 N. Errors in
current level control are within 0.1 A. A larger series of measurements that were made
before the addition of the ball/socket contacts was eventually discarded because the
measurement error due to friction appeared to be significant.

The data support some of the anticipated relationships among the position, current and
force variables but appear to disagree with other aspects of the present theory. Figure

3.2.1 shows the vertical force as a function of y/c for several values of current. The force
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tends to increase roughly as the inverse square of the gap. The magnitudes of the forces,
however, are considerably lower than those predicted either by the linear finite element
theory or by the traditional theory based on assumption of uniform gaps, and the ratio
between measured and predicted forces is not constant. Figure 3.2.2 is a comparison of
the measured forces with those predicted by the finite element calculation. The results
indicate that at large gap and/or small current the ratio between the measured and predicted
forces is about 1.5, but at smaller gaps and/or higher currents this ratio increases,
eventually exceeding 2.0 for all the three values of current that are plotted.

Several mechanisms may be operating to cause these discrepancies, including flux
leakage, non-uniform permeability of the materials and magnetic saturation. Some part of
the disagreement is likely the result of measurement errors, but the differences appear to be
significant even after allowing for reasonable experimental error. These disagreements
reinforce the need for additional work on force calculation.

The linear finite element theory predicts the existence of forces from a magnet that are
normal to its axis of symmetry when the rotor is displaced from this symmetry axis, but the
forces that are measured are considerably stronger than those predicted by calculation.
Figure 3.2.3 shows the x component of force when the rotor is placed as closely as
possible on the y-axis. The normal force appears to be somewhat stronger at higher
current levels but all these forces are small, on the order of 5 % or less of the principal
force, so it is difficult to attribute much significance to this ratio in view of the experimental
uncertainty. At higher values of x/c, however, the normal force becomes much more
significant. Figures 3.2.4 through 3.2.7 show the vertical and horizontal components of
force when the x/c value is 0.24 or 0.45, and Figure 3.2.8 shows the value of the x force
as a function of position for several values of x/c while the current is held constant at 1.0
A. In general it appears that the normal force increases significantly with increasing x/c,
and at x/c = 0.24 and 0.45 the horizontal force is about 10 % of the principal force.
Theory predicts a ratio of about 3 % to 5 %.
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An aspect of the measured forces that was not anticipated is the lack of degradation of
principal force as the rotor is moved off the principal axis. Numerical calculations predict a
significant decrease in the principal force under these conditions, but the measurements do
not support this prediction. Figure 3.2.9 indicates that within measurement uncertainty
there are not significant differences in the y-components of force at the three different
values of x/c. A possible cause is that a self-correcting redistribution of flux along the pole
faces occurs that allows the force to be maintained. The present theory assumes that the
magnetic potential along the entire surface of each pole face is uniform. The mechanism of
potential and flux redistribution should be studied further.

In summary, the general trends of the measured y-forces agree with the predictions of
the theory while the magnitudes of forces are somewhat smaller than those predicted.
Other aspects of theory are not confirmed by the measurements. The measured forces in
the x direction appear to be significantly larger than those predicted by theory when the
rotor has an x eccentricity. Also, the y forces do not appear to decrease significantly when
the rotor is given an eccentricity in the x direction. These effects appear to be significant
even after considering experimental uncertainty, and both of these phenomena were judged

to warrant further study.
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3.3 Measurement Apparatus II

Measurements of forces exerted by a magnet on a stationary, non-rotating rotor were
made using a second apparatus that relied on a different measurement principle.

The magnet cores and the shaft are constructed of 0.014 inch laminations of silicon
steel M15. Each magnet is wound with a total of 400 turns of #22 wire, arranged in two
coils, one on each pole leg. The nominal dimensions of the magnets are the same as those
of the first apparatus, which was of solid material, but the effective cross section is smaller
in the new apparatus because of the laminated construction. At present its value has not

been determined.

3.3.1 Deflecting Beam Apparatus

Figure 3.3.1 is a schematic of the apparatus for force measurement. The shaft is
clamped at each end in two large pedestals that are fixed to a solid base. The magnets are
assembled in a retaining shell and the entire magnet assembly is mounted on a slide
mechanism allowing movement in the horizontal direction. The slide is mounted in turn on
a laboratory jack that allows the assembly to be moved vertically. Thus the bearing
assembly can be moved in two directions and positioned accurately with respect to the
fixed shaft. The relative position of the bearing is measured by four proximity probes
oriented at 459 to the vertical. These probes are connected to the bearing housing so they
always measure the relative displacement of the rotor from the center of the bearing
regardless of the deflection of the rotor support beam.

When one or more of the magnets is activated, the force causes a deflection of the
beam from its static position. The components of this deflection in the vertical and
horizontal directions are measured by a separate set of proximity probes that are connected
directly to the base of the apparatus. The intention was to place the support beam in the
pedestals to approximate the perfect clamped-clamped case, so the stiffness of the beam
would be equal in all directions and could be calculated from simple beam theory. After
assembly it was found, however, that manufacturing tolerances resulted in unequal
stiffnesses, so the force vs. deflection relationship was directly calibrated independently in
both directions. Although the deflections were different in the two directions, the
relationships were linear over the range required for measurements, so the calibrations

yield a constant horizontal and a constant vertical stiffness.
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3.3.2 Measurement Method

Before conducting any force measurements, the location of the bearing center is
determined by noting the readings of the position probes when the shaft is placed against
the pole faces of the magnets and interpolating to find the center. Also, the undeflected
shaft position is noted.

To measure the force at a particular current level, the magnet/rotor assembly is first
degaussed using alternating current in the coils of the magnet, with peak amplitude of at
least twice the highest current used. To avoid destructive vibrations while degaussing, the
shaft is rigidly fixed relative to the magnets by using a temporary clamp. The magnets are
then activated and the proximity probe outputs are read to determine the final shaft position
relative to the magnets and also the absolute shaft deflection.

3.3.3 Measurements Using One Magnet

The apparatus described above was used to measure the force between a single magnet
and the shaft for a variety of positions of the shaft with respect to the center of curvature of
the magnet pole faces. Particular attention was paid to the forces when the shaft was given
an eccentricity with respect to the axis of symmetry of the magnet. Such relative positions,
which will be seen as undesirable, may nevertheless result from three causes:
misalignment of the magnets during assembly (note that this is a strong argument for
manufacture of magnets having poles attached to a continuous backing ring), from dynamic
motion of the shaft, or from errors in biasing.

Measurements were made at several levels of current in the magnet coils, and over a
range of shaft positions within the clearance space. After assembly it was found that the
magnets lacked a common center because of assembly tolerances. All the measurements
therefore were conducted using one of the side magnets. At present the numerical
calculation method described above has not been applied to the geometry of the new
apparatus, so the results presented below are measurements only. A limited discussion of
the trends of the normal forces in relation to the previous experiment as well as to the
calculations that have been performed will be attempted, however.

The results of these measurements are presented in a slightly different way from the
results of the Section 2.1 above, reflecting a different sequence of shaft repositioning from
that used in the first series of experiments. Each group of symbols corresponds to a
constant x position and therefore represents a traverse of the vertical direction (the normal

direction in this case). By executing traverses of the normal direction it was possible to
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plot the ratio of normal force to principal force as a function of the distance away from the
axis of symmetry.

In the plots below,the value of X, or x/c, listed in the legend gives the position of the
rotor along the axis of symmetry of the magnet. The largest possible value is 1.0, but it
was not possible to approach this value closely with the present design of the apparatus. A
discussion of possible redesign to alleviate this difficulty, as well as to achieve some other
goals, is presented in a later section. For the present, however, most of the values of X in
this and subsequent plots are negative, and some extrapolation is necessary to visualize
trends as the rotor approaches the magnet. Some of the values of y/c that are presented are
smaller than -1.0, corresponding to a location so far from symmetry axis that it is outside
the clearance space. While this would not be possible in an actual design, the steady state
apparatus can accommodate such large displacement.

Figure 3.3.2 shows the measured force in the principal direction and Figure 3.3.3
shows the force in the normal direction at a current level of 1.0A (400 A-t). The principal
force is seen to be significantly larger at larger values of X, or rotor locations closer to the
magnet. The force increases slightly as the rotor is moved away from the axis of
symmetry, toward one of the poles. This trend was predicted by the original linear theory
based on gap regions only, but has not been predicted by the nonlinear theory. The
magnitude of the normal force increases strongly with an increase in distance away from
the symmetry axis. Figure 3.3.4 shows the ratio of the normal force to the principal force.
Linear fits to the data of each traverse were calculated. To avoid confusion only one fit is
shown, but the slope of this line is equal to the average of the slopes of all the fits.

Figures 3.3.5 through 3.3.16 show the corresponding results for other values of coil
currents. Similar trends are observed in all the cases. In each of the plots of force ratio a
linear fit is provided, and in each case the slope of the fit chosen is the same as the average
of the slopes of all the individual fits.

Over the ranges of position examined, the data indicate an approximately linear
relationship between the normal eccentricity of the shaft and the ratio of normal to principal
force. The constant of proportionality seems to be larger at lower currents, but for all cases
examined its value is between 0.14 and 0.17. The nonlinear theory has predicted the
existence of normal forces, but has not predicted such a large constant of proportionality
for the ratio.
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Figure 3.3.3 Normal force from single magnet at 1.0 Ampere (400 A-turns).
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Figure 3.3.15 Normal force from single magnet at 1.75 Ampere (700 A-turns).
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3.3.4 Measurements Using Two Magnets

The result that the normal force seems to be approximately proportional to the
product of principal force and normal eccentricity indicated that the normal forces would be
even more significant in the case of a strongly biased, opposed magnet pair, where the
principal forces are approximately balanced. To examine this possibility a new set of
experiments was conducted using two opposed magnets at the same current.

Figure 3.3.17 is a plot of the principal force exerted by the magnet pair as a
function of the normal coordinate, at several values of the principal coordinate, along the
symmetry axis. At small eccentricity, the force in the principal direction is near zero, as
expected, since the shaft is equidistant from the two magnets. As the shaft is moved
toward either of the magnets, there is a resultant force in the direction of that magnet. This
force is a relatively weak function of the normal coordinate, but is seen to be largest in
magnitude when both normal and principal eccentricities are large.

The normal forces exerted under these conditions are shown in Figure 3.3.18. The
intercept of these force plots with the axes would nominally be at (0,0), and the precise
cause of their displacement from that intercept is not yet clear, although its most likely
cause seems to be uncertainty in the angular positions of the magnets around the clearance
circle. This possibility is discussed further below, but it is felt that the magnitudes of the
forces observed in this plot remain significant after considering this uncertainty, because all
the normal forces do in fact change sign as anticipated, at some point. The magnitude of
the normal force is the same order as the resultant principal force at small eccentricities and
is significantly larger than the principal force at large eccentricities, as illustrated by the plot
of Figure 3.3.19, which shows the ratio of normal to principal force. This occurs because
the normal forces from the two magnets are additive, while the principal forces are of
opposite sign.

The displacement from zero of the intercepts of the normal forces with the axes in
Figure 3.3.19 and the locations of minima of the principal forces in Figure 3.3.17 have
been considered in terms of possible angular uncertainty in magnet placement. The
apparatus, further described in the earlier progress report, was assembled by positioning all
of the magnet pole faces against a plastic mandrel and then clamping the magnet
laminations in place. The mandrel was then carefully removed. Because of the method of
assembly, it is felt that the uncertainty in radial position of each pole face is small, on the
order of 1 % of the clearance. The largest uncertainty is that of the angular position of each

magnet.
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Figure 3.3.17 Measured principal force from opposed magnet pair at 400 A-t.
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Ideally, each magnet should be 90° from each of its neighbors, but in fact, assembly
tolerances may have resulted in errors of up to 3° from the nominal positions. This would
result in an uncertainty in orientation of the force vector associated with each magnet. Such
a 30 uncertainty would result in an increase or decrease in the normal force component of
approximately 2 % of the principal force from each magnet of the pair. Using a principal
force of 1.0 at zero of the principal coordinate, a 3 uncertainty in principal force
orientation would result in a change in the normal force of 0.06 nondimensional force
units. This is an uncertainty of the same order as the displacement of intercepts of the
measured normal force data from the (0,0) position in Figure 3.3.18.

If this uncertainty in angular position is the cause of the displacement of the data, it
would be expected that forces measured at other current levels would behave similarly.
Additional measurements were made at two other current levels, and indeed the data all are
displaced by approximately the same amount. These data are shown in Figures 3.3.20
through 3.3.22, for MMF of 300 A-t, and in Figures 3.3.23 through 3.3.25, for MMF of
500 A-t (each magnet). It is therefore believed that a small error in angular positioning is
present.

In interpreting the measurements of Figures 3.3.17 through 3.3.25, then, it must
be remembered that this uncertainty of angular orientation may be playing a role.
Nevertheless, the magnitudes of the normal forces are still significant. Those on the
negative side of the plots are apparently increased by the error, but those on the positive
side are apparently decreased. Therefore, it may be conservatively stated that the
magnitudes of normal forces in a magnet pair that is perfectly aligned will be at least as
large as those on the positive side of the plots presented. Under this interpretation the
normal forces are of significant magnitude. In addition, the very fact that the system is
shown to be highly sensitive to such angular errors should receive some emphasis. This
factor must be considered in designing the actuator and in determining the level of
robustness or the type of algorithms required for controlling the bearing. It is a strong
argument, in fact, for the use of magnets made with a continuous outer ring, which would
practically preclude this type of uncertainty.

The coordinate coupling illustrated in the force ratio plots has serious implications
for the design of magnetic bearings and magnetically supported flexible rotor systems
because it is primarily dependent not on the control currents, but on the bias currents.
Since it is widely believed that magnetic bearings must be biased rather strongly in order to
provide a greater degree of linearity and to improve their stability characteristics, the

coordinate coupling in these systems could be strong. In flexible rotor dynamics,
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coordinate coupling in bearings is regarded as an undesirable characteristic because of the

potential for excitation at multiples of the running speed as well as for self-excited whirl.
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Figure 3.3.20. Measured principal force from opposed magnet pair at 300 A-t.
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Figure 3.3.21. Measured normal force from opposed magnet pair at 300 A-t.
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Figure 3.3.24. Measured normal force from opposed magnet pair at 500 A-t.
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The type of coupling illustrated by these measurements would not tend to cause whirl,
because the coupling coefficients have the same sign, unlike the case of a fluid film
bearing, where the normal stiffness coefficients often have opposite signs. They would,
however, tend to cause an excitation at multiples of the running speed. This possibility
must be considered when designing magnetic bearings for flexible rotor applications, such

as gas turbines and other turbomachinery.
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4. CLOSURE
4.1 Summary of Technical Findings
Both numerical and experimental studies were done to determine the characteristics of

the forces exerted on a stationary shaft by a magnetic bearing actuator. The numerical
studies were based on finite element computations and were of three types:

(1) Calculations based only on energy stored in air gaps.

(2) Calculations including metal parts, with locally constant magnetic

permeability.

- (3) Calculations including nonlinear magnetization function, with the possibility
of saturation .

— Principal conclusions from the analytical/numerical studies are:

(1) The distribution of saturation in the magnet core and the rotor influences both
the principal attractive force and the normal force

(2) The computed normal force is considerably smaller than that measured
experimentally

(3) The trend of nonlinear theory to predict larger normal forces in relation to
principal forces is appropriate.

Measurements of the force versus position of the shaft were made using two
separate measurement rigs, one based on strain guage measurement of forces, the other
based on deflections of a calibrated beam. All measurements were static, using steady
currents and a nonrotating shaft. Principal conclusions from the experimental studies,
taken in conjunction with the numerical studies, are:

(4) The trends of the measured principal (y) forces agree with the predictions of
the theory while the magnitudes of forces are somewhat smaller than those
predicted. The y forces do not appear to decrease significantly as predicted
by theory when the rotor is given an eccentricity in the x direction.

(5) The measured forces in the x direction are significantly larger than those
predicted by theory when the rotor has an x eccentricity.

— (6) Over the ranges of position examined, there is an approximately linear
relationship between the normal eccentricity of the shaft and the ratio of
normal to principal force. The constant of proportionality was not the same
for all cases, but its value was consistently between 0.14 and 0.17. The
nonlinear computations predicted the existence of normal forces, but did not
predict such a large ratio.
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(7) The type of coupling illustrated by these measurements probably would not
tend to cause whirl, but they might tend to cause other kinds of
nonsynchronous excitation This possibility must be considered when
designing magnetic bearings for flexible rotor applications, such as gas
turbines and other turbomachinery.

Further work was conducted beyond the nominal work period of this proposal, in
which simulations of 2DOF systems were performed subject to these force models. The
results, attached as Appendix C, show that significant nonlinear behavior can occur,
including multiple coexisting solutions, bifurcations in response as the stabilities of the
respective solutions change, and self-similarity in stability boundaries.

4.2 Documentation

In the course of this project, one master's thesis and one Ph.D. dissertation were
completed. Edward McCaul received the degree Master of Science after defending the
thesis entitled "Measurement of Forces in a Magnetic Journal Bearing" [72]. Harold Xia
received the degree Doctor of Philosophy after defending the dissertation "Numerical
Investigation of Suspension Force in a Magnetic Journal Bearing Actuator” [60].

Five interim progress reports were filed with NASA as this work proceeded

Presentations of results of the research performed under this grant were made at three
technical meetings:

1. NASA Workshop on Aerospace Applications of Magnetic Suspension at Langley
Research Center, September 1990

2. ROMAG'91 Conference on Magnetic Bearings and Dry Gas Seals, in Alexandria,
VA, March 1991

3. ASME/STLE Joint Tribology Conference in St. Louis, Missouri, October 1991
(also published in ASME Journal of Tribology) [68]

In addition, related work on nonlinear dynamic simulation of magnetic bearing
systems that makes direct use of the results obtained in this project have been presented at
three technical conferences:

1. Third International Symposium on Magnetic Bearings, Alexandria, VA 1992 [69]

2. NASA Second International Symposium on Magnetic Suspension Technology,
Seattle, WA, August 1993 [73]

3. ASME International Gas Turbine and Aeroengine Congress, The Hague, 1994
(also published in ASME Journal of Engineering for Gas Turbines and Power) [74]
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APPENDIX A - PROGRAM FOR FORCE CALCULATION USING
AIR GAPS ONLY

O PP 0 sS85 88555585555555558555555555555555855555555556688588

00w

GAPFOR SEPT. 1990

THIS ALGORITHM CALCULATES THE MAGNETIC SUSPENSION FORCE FOR A

MAGNETIC JOURNAL BEARING ACTUATOR. THE CALCULATION REGION
NVOLVES

THE AIR GAP BETWEEN THE MAGNET POLE-FACES AND THE ROTOR WHERE THE

MAGNETIC FIELD IS DOMINATED BY LAPLACE EQUATION. MAGNETIC FORCE

IS DETERMINED BY USING VIRTUAL WORK PRINCIPLE.
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INPUT

LINE1-TITLE
LINE2- E: ECCENTRICITY OF SHAFT CENTER
C: CLEARENCE(IN.)
R: JOURNAL RADIUS(IN.)
ANG1,ANG2: LOCATION OF THE MAGNET POLE 2 (DEGREES)
EBC: CODE USED FOR EXPANDING PART AS A PERCENTAGE OF THE
GAP REGION
(A) 0: 10% OF THE GAP REGION
(B) 1: 20% OF THE GAP REGION
CURRENT: CURRENT IN COILS(A)
NCOIL: # OF TURNS (EACH COIL)
LINE3~ N: CIRCUMFERENTIAL ELEMENT DIVISIONS
M: RADIAL ELEMENT DIVISIONS
ALPHA: ANGLE BETWEEN POLES
NBON: SPECIFIED BOUNDARIES
PHISTAR]l: ARBITRARILY ASSUMED B.C ALONG POLE 1
PHIR: BOUNDARY CONDITION ALONG ROTOR CURVATURE
MG_DETH: MAGNET DEPTH

OUTPUT
PHI--------- MAGNETIC POTENTIAL FIELD
BETA------~- MAGNETIC FLUX DENSITY
GAMMA-~----~ MAGNETIC FLUX
SIGMA---~--- MAGNETIC ENERGY
FORCE------~ MAGNETIC SUSPENSION FORCE
SUBROUTINES
COORD------- GRID GENERATION
ELEMOD----~-- ELEMENT NODAL SPECIFICATION
ASSEML------ GLOBAL BANDED COEFFICENT MATRIX
MODMAT-----~ MODIFIED BANDED MATRIX
GAUSS2~-----~ GAUSS ELEMINATION METHOD FOR BANDED MATRIX
FLUXEG---~-- MAGNETIC FLUX & ENERGY
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0888585555555 55555555555558555555555555555585555535558555958S585585588

$
C

***')

10

20

25
30
35

37

55

40

50

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
REAL*8 KAPPAl,KAPPA2Z,MMF,MG_DETH, MU

REAL*8 BETA(1000),AL{1000),PHI(800),PHIS(800),XJJ(50),YJJ(50,50)

REAL*8 X(800),Y(800),FJJ(50,50),RECMAT(800,100) ,REMMAT(800,100)
REAL*8 RX(300,10),RY(300,10),RPHI(300,10),XPLOT(500,4)

REAL*8 YPLOT{500,4),PHIPLOT{500,4),BETAPLOT (1000)

REAL*8 ANGPLOT(1000),XBETA(1000),YBETA(1000)

INTEGER EB, EBC, EM, ELEMT, B1, B2

INTEGER X_NUMBER, X_POINT,Y_POINT,Y_ P

INTEGER II(1000),JJ(1000),KK(1000),IBOUND(2,800)

IN=1

I0=9

WRITE(IO,5)
FORMAT (1H1, 10X, ' *** MAGNETIC FORCE CALCULATION--LINEAR MODEL

READ(IN,7)TITLE

FORMAT (30A4)
READ(IN,10)E,C,R,ANG1l,ANG2, EBC, CURRENT, NCOIL
FORMAT (5F10.4,I4,F10.4,16)
WRITE(*,20)E,C,R,ANG1, ANG2

FORMAT (1X, 'E=',F5.3,1X,'C=',F5.3,1X,'R="',F5.2,1X,

&'ANGl=',F5.2,1X, 'ANG2=" ,F5.2)

WRITE({*,25)EBC, CURRENT, NCOIL

FORMAT (1X, 'EBC=',I4,1X, 'CURRENT=',F8.4,1X, 'NUMBER OF COIL=',1I6)
READ(IN,30)N,M,ALPHA,NBON, PHISTARL, PHIR, MG_DETH
FORMAT(2110,F10.4,I10,3F10.4)

WRITE(*,35)M,N,ALPHA, NBON

FORMAT (1X, 'M=',I4,1X, 'N=',I4,1X, 'ALPHA="',F7.2,1X, 'NBON="',61I4)
WRITE(*,37)PHISTARL, PHIR,MG_DETH

FORMAT (1X, 'PHISTAR1="',F7.2,1X, 'PHIR="',F7.2,

&1X, 'MAGNET DEPTH=',F7.4)

CONVER=0.0254D0
E=E*CONVER

C=C*CONVER

R=R*CONVER

MG _DETH=MG_DETH*CONVER
PI=4.0D0O*ATAN(1.0DO)
MU=4.*PI*1.0E-7
D_A=(ANG2-ANG1)*PI/180.D0
POLE_L=D_A* (R+C)
WRITE(*,55)POLE_L
FORMAT (1X, ' POLE_L="',F15.9)
IF(EB.EQ.0)GOTO 40
EB=5

NR=N/EB

GOTO 50

EBR=10

NR=N/EB

B1=NR*2+1

B2=N+Bl

N1=B2+NR*2

M1=M+1

C TOTAL NODAL POINTS (INCLUDING EXPANDED BOUNDARY AREA)

NODE=N1* (M1)



N2=N1-1
C TOTAL ELEMENTS

ELEMT=2*N2*M

WRITE(*, 80)NODE, ELEMT

80 FORMAT(lX,’NODE=',I10,1X,'ELEMTz',IlO)

C
csssssss$ssssssssssssssssssssssssssssssssssss
C ARRAY OF POINTS FOR FORCE DISTRIBUTION
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

DELTA=C/10.D0
CHANGE=CONVER*1.0D-7
DO 3010 1=1,8
XJJ(I)=.0D0
DO 3010 J=1,15
3010 YJJ(1,J)=.0D0
DO 3020 1=1,1
C XJJ(I)=(I-1)*DELTA
XJJ(I)=.0135D0*CONVER
DO 3020 J=1,15
3020 YJIJ(I,J)=.021D0*CONVER- (J-1) *DELTA
C3020 WRITE (*,3022)X3J(I),YJJI(I,J)
3022 FORMAT(ZX,'XJJ:’,F12.8,2X,'YJJ=',F12.8)
C
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C LOOP ON FORCE CALCULATION
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

DO 1050 1=1,1
DO 1050 J=1,1
C
C$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C _CALCULATION OF BOUNDARY CONDITIONS FOR BACKWAORD PERTURBATION

C$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
C

XJ=XJJ (1) -CHANGE
YJ=YJJ(I,J)
Al=ANG1+ALPHA
A2=ANG2+ALPHA

C
T
CALL COORD(Bl,B2,N1,EB,N,M,C,R,Al,AZ,PI,XJ,YJ,X,Y,RANGl,RANGZ,
& RX,RY)
T
C
C __________________________________________
CALL ELEMOD(M,NZ,II,JJ,KK,ELEMT)
Commm DI
C
C CHECK ORDER OF VERTICES WITHIN ELEMENTS

WRITE (IO, 8000)

8000 FORMAT (2X, 'CHECK ORDER OF VERTICES WITHIN ELEMENTS' )
DO 82 ITEST=1, ELEMT
WRITE(IO,84)II(ITEST),JJ(ITEST),KK(ITEST)
WRITE(IO,BS)X(II(ITEST)),X(JJ(ITEST)),X(KK(ITEST))

82 WRITE(IO,SS)Y(II(ITEST)),Y(JJ(ITEST)),Y(KK(ITEST))



A4

84 FORMAT(lX,(316,lX))
85 FORMAT(lX,(6F8.5,lX))
¢ BANDWIDTH OF GLOBAL RECTANGULAR MATRIX
NWID=M1+2
WRITE(*,135)NWID
135 FORMAT(lX,'NWID=',I6)

C
S
CALL ASSEML(M,N,NWID,ELEMT,X,Y,EB,NODE,II,JJ,KK,RECMAT,PHI,AL,
& PHISTARl,PHIR,PHIS,IBKK,IBJJ,IBOUND)
I s
C
C Do 110 K=1,NODE

C110 WRITE(*,lZO)(RECMAT(K,KJ),KJ=1,NWID),PHI(K)
120 FORMAT(lX,7F8.2,2X,F8.2)

C
e
CALL MODMAT(NWID,NBON,PHI,NODE,RECMAT,REMMAT,PHIS,IBOUND,

& IBKK,IBJJ,M,N,EB)
e
C
b S

CALL GAUSS2(REMMAT,PHI,NODE,NWID)
SRR LSS
C
C WRITE(IO,140)M1,N1

140 FORMAT(3X,IS,',',IS)
MNODE=NODE-M

C po 150 1pOT=1,M1

C DO 160 JPOT=IPOT,MNODE,M1
C X(JPOT)=X(JPOT)/CONVER

Cc Y(JPOT)=Y(JPOT)/CONVER

c160 WRITE(IO,170)X(JPOT),Y(JPOT),PHI(JPOT)
Cc150 MNODE=MNODE+1

170 FORMAT(3X,2(F7.3,‘,‘),F7.3)
cC
C T
CALL FLUXEG(EB,ELEMT,II,JJ,KK,RANGI,RANGZ,N,AL,PHI,X,Y,GAMMA,
$SIGMA,BETA,M,R,C,NODE,MG_DETH,ANGPLOT,XBETA,YBETA)
ettt

GAMMASTAR1=GAMMA
C WRITE(*,ZZO)GAMMASTARI
220 FORMAT(lX,‘GAMMASTAR1=',F12.4)
PHISTAR2=—PHISTAR1
Al=ANG1l

CALL COORD(Bl,B2,Nl,EB,N,M,C,R,Al,A2,PI,XJ,YJ,X,Y,RANGI,RANG2,
& RX, RY)



Comrm e e e e
C
C-——— - e
CALL ELEMOD(M,N2,II,JJ,KK,ELEMT)
[ e i e
C
G m o o o
CALL ASSEML (M,N,NWID, ELEMT,X,Y,EB,NODE, II,JJ,KK,RECMAT, PHT, AL,
& PHISTARZ, PHIR, PHIS, IBKK, IBJJ, IBOUND)
Commm e e e e e e e e e —— e ————
C
G m m
CALL MODMAT (NWID, NBON, PHI,NODE, RECMAT, REMMAT, PHIS, IBOUND,
& IBKK, IBJJ,M,N, EB)
G m o
c
Cemmr e e e e e —
CALL GAUSS2 (REMMAT, PHI, NODE, NWID)
C-——— -
C
Cmmm e e e e e e m e — e ——————
CALL FLUXEG(EB,ELEMT,II,JJ,KK,RANG]1,RANG2,N,AL, PHI, X, Y, GAMMA,
$SIGMA,BETA,M,R,C,NODE, MG_DETH, ANGPLOT, XBETA, YBETA)
Cmmm e m e e e e — e ——————
C
C DO 230 I=EM,1,-M2
C230 WRITE(*,240) (BETA(J),J=I,I+M2-1)
C
(S et e et
C CALCULATE PARAMETERS TO DECIDE BOUNDARY CONDITION
Cmmm e e e e e e e e ——m—— e —
C
GAMMASTARZ=GAMMA
C WRITE(*,250)GAMMASTARZ

250 FORMAT(1X, 'GAMMASTAR2="',F12.4)
KAPPA1=GAMMASTAR1/PHISTAR1
KAPPA2=GAMMASTAR2/PHISTAR2Z
MMF=CURRENT *FLOAT (NCOIL)
PHIP1=MMF/ (1.-KAPPAl/KAPPA2)

PHIP2=PHIP1-MMF
C
CS885555555555855855555855855555555558555555555858558585585555958588888
$

C CALCULATION OF MAGNETIC FLUX AND ENERGY FOR BACKWARD PERTURBATION
CS85855555555558855555555585555558855555385550885555555558558585585888S

$

C
XJ=XJJ (1) -CHANGE
YJI=YJJ(I,J)
Al=ANG1+ALPHA
A2=ANG2+ALPHA

Cc



Al

NK=1
DO 650 IPLOT=1,N2
DO 660 JPLOT=1,M
XPLOT (NK, 1) =RX (IPLOT+1, JPLOT)
XPLOT (NK, 2) =RX (IPLOT, JPLOT)
XPLOT (NK, 3) =RX (IPLOT, JPLOT+1)
XPLOT (NK, 4) =RX (IPLOT+1,JPLOT+1)
YPLOT (NK, 1) =RY (IPLOT+1, JPLOT)
YPLOT (NK, 2) =RY (IPLOT, JPLOT)
YPLOT (NK, 3) =RY (IPLOT, JPLOT+1)
YPLOT (NK, 4) =RY (IPLOT+1,JPLOT+1)
PHIPLOT (NK, 1) =RPHI (IPLOT+1,JPLOT)
PHIPLOT (NK, 2) =RPHI (IPLOT, JPLOT)
PHIPLOT (NK, 3) =RPHI (IPLOT, JPLOT+1)
PHIPLOT (NK, 4) =RPHI (IPLOT+1,JPLOT+1)
660 NK=NK+1
650 CONTINUE
NUMELE=ELEMT/2
WRITE (IO, 670)NUMELE
670 FORMAT(3X,I5)
DO 680 IPLOT=1,NUMELE
DO 685 JCON=1,4
XPLOT (IPLOT, JCON) =XPLOT ( IPLOT, JCON) /CONVER
C685 YPLOT (IPLOT, JCON) =YPLOT (IPLOT, JCON) /CONVER
C
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$S$$$$$
Cc DATA OUTPUT FOR CONTOUR GRAPHICS
c$$$$$$$$$$S$$$$$$$$S$$$S$$$$$$$$$$S$

9]

ann

C
C WRITE(IO,8010)
C8010 FORMAT (2X, 'CONTOUR PLOT"')
c WRITE(IO,690)(XPLOT(IPLOT,JPLOT),JPLOT=1,4),
C & (YPLOT(IPLOT,JPLOT),JPLOT=1,4)
C680 WRITE(IO,700)(PHIPLOT(IPLOT,JPLOT),JPLOT=1,4)
690 FORMAT(3X,7(F7.3,','),F7.3)
700 FORMAT(3X,3(F10.4,‘,'),F10.4)

A1=ANG1l

A2=ANG?2
C
RS SE e

CALL COORD(Bl,BZ,Nl,EB,N,M,C,R,Al,AZ,PI,XJ,YJ,X,Y,RANGI,RANGZ,

& RX,RY)
e o mmm—mmmmsmmm—msm—SSooooSSSSTTSSSTTSTToTITTITTITETTOOT
Cc
Commmmmmmmm—m—m— =SS S o oSS TS oS ST mS TR

CALL ELEMOD(M,NZ,II,JJ,KK,ELEMT)
P e
C
e e mmmmmmme—mme——SSSSSoSSSCSSTSSSTSTSTTTTETTIITITTEITOC

CALL ASSEML(M,N,NWID,ELEMT,X,Y,EB,NODE,II,JJ,KK,RECMAT,PHI,AL,

& PHIPZ,PHIR,PHIS,IBKK,IBJJ,IBOUND)
RS S



A8

CALL MODMAT (NWID,NBON, PHI,NODE, RECMAT, REMMAT, PHIS, IBOUND,

& IBKK, IBJJ, M, N, EB)

o o o e

C

Cm e o
CALL GAUSS2 (REMMAT, PHI,NODE, NWID)

C e e

C

o
CALIL FLUXEG(EB,ELEMT,II,JJ,KK,RANG]1, RANG2,N,AL, PHI, X, Y, GAMMA,
$SIGMA, BETA,M, R, C, NODE, MG_DETH, ANGPLOT, XBETA, YBETA)

C m o o o o o

GAMMA_2A=GAMMA

SIGMA_2A=SIGMA

WRITE(*,310)GAMMA_2A, SIGMA_2A

310 FORMAT(1X, 'GAMMA_2A=',F12.4,1X, 'SIGMA_2A=',6F12.4)

C
C5855858558555555555558555555555555555555855555555555555958955559%
C CALCULATION OF BOUNDARY CONDITIONS FOR FORWARD PERTURBATION
C885555555555553555555555555555555555555555555555555555555555853588
C

XJ=XJJ (I)+CHANGE

YJ=YJJ(I,J)

Al1=ANG1+ALPHA

A2=ANG2+ALPHA
cC
Cm o o e e m o

CALL COORD(B1l,B2,N1,EB,N,M,C,R,Al,A2,PI,XJ,YJ,X,Y,RANGL, RANGZ,

& RX, RY)
G m o — e m =
C
C ________________________________________

CALL ELEMOD(M,N2,II,JJ, KK, ELEMT)
C e
C
e i e

CALL ASSEML(M,N,NWID, ELEMT,X,Y,EB,NODE,II,JJ, KK, RECMAT, PHI, AL,

& PHISTAR1, PHIR, PHIS, IBKK, IBJJ, IBOUND)
o e e it
C
G m o o o

CALL MODMAT (NWID,NBON, PHI,NODE, RECMAT, REMMAT, PHIS, IBOUND,

& IBKK, IBJJ,M,N, EB)
e e et r e e e m oo m—— oo ——
C
O e b

CALL GAUSS2 (REMMAT, PHI,NODE, NWID)

C __________________________________________
C
Cmm e e PP e —— o —— - —— e



CALL FLUXEG(EB,ELEMT,II,JJ,KK,RANG1, RANGZ,N, AL, PHT,X,Y,GAMMA,
$SIGMA,BETA,M,R,C,NODE, MG_DETH, ANGPLOT, XBETA, YBETA)

A9

410

M2=M*2

EM=ELEMT-M2+1
GAMMASTAR1=GAMMA

WRITE(*, 410)GAMMASTARL

FORMAT (1X, 'GAMMASTAR1="',F12.4)
PHISTAR2=-PHISTAR1

Al=ANG1

A2=ANG2

CALL COORD(B1,B2,N1,EB,N,M,C,R,Al,A2,PI,XJ,YJ,X,Y,RANG]l, RANG2,
& RX, RY)

CALL ASSEML(M,N,NWID, ELEMT,X,Y,EB,NODE,II,JJ,KK,RECMAT, PHI, AL,
& PHISTARZ2, PHIR, PHIS, IBKK, IBJJ, IBOUND)

CALL MODMAT (NWID, NBON, PHI, NODE, RECMAT, REMMAT, PHIS, IBOUND,

& IBKK,IBJJ,M,N, EB)

CALL FLUXEG(EB, ELEMT, II,JJ,KK,RANG1,RANG2,N,AL, PHT,X,Y,GAMMA,
$SIGMA, BETA,M,R,C,NODE, MG_DETH, ANGPLOT , XBETA, YBETA)

420

GAMMASTAR2=GAMMA

WRITE (*, 420)GAMMASTAR2

FORMAT (1X, 'GAMMASTAR2="',F12.4)
KAPPA1=GAMMASTAR]1/PHISTAR1
KAPPA2=GAMMASTAR2 /PHISTAR2
MMF=CURRENT *FLOAT (NCOIL)
PHIP1=MMF/ (1.-KAPPA1l/KAPPAZ)
PHIP2=PHIP1-MMF
WRITE(*,430)KAPPAl,KAPPA2,FP1l,FP2



AlO

430 FORMAT(1X, 'KAPPAl=',F12.4,1X, 'KAPPA2=',6F12.4,1X,
&'FPl=',F12.4,1X, 'FP2=',F12.4)
C
L0808 0855855355505855555585855555855555555355888555558585855558855558858
C CALCULATION OF MAGNETIC FLUX AND ENERGY FOR FORWARD PERTURBATION
S e e e e A R R
o
XJ=XJJ (I)+CHANGE
YJ=YJJ(I,J)
A1=ANG1+ALPHA
A2=ANG2+ALPHA

C

o
CALL COORD(B1,B2,N1,EB,N,M,C,R,Al,A2,PI, XJ,YJ,X,Y,RANG], RANG2,
& RX, RY)

G m m

C

Cm e e e
CALL ELEMOD(M,N2,II,JJ,KK, ELEMT)

Cm e e o

C

G mm m e ___
CALL ASSEML(M,N,NWID, ELEMT,X,Y,EB,NODE, II,JJ,KK,RECMAT, PHI, AL,
& PHIP1, PHIR, PHIS, IBKK, IBJJ, IBOUND)

G m e e e e

C

gy
CALL MODMAT (NWID, NBON, PHI,NODE, RECMAT, REMMAT, PHIS, IBOUND,
& IBKK, IBJJ,M, N, EB)

Cmm e

C

g
CALL GAUSS2 (REMMAT, PHI, NODE, NWID)

C e

C

Cm e mm
CALL FLUXEG(EB, ELEMT,II,JJ,KK,RANG]1,RANG2,6 N, AL, PHI,X,Y, GAMMA,
$SIGMA, BETA, M, R, C,NODE, MG_DETH, ANGPLOT, XBETA, YBETA)

Clm e e el

GAMMA__1B=GAMMA
SIGMA_1B=SIGMA
WRITE(*,330)GAMMA_ 1B, SIGMA_1B
330 FORMAT(1X, 'GAMMA_1B=',Fl12.4,1X, 'SIGMA_1B=',F12.3)
Al=ANG1
A2=ANG2

CALL COORD{B1,B2,N1,EB,N,M,C,R,Al,A2,PI, XJ,YJ, X, Y, RANG], RANG2,
& RX, RY)



oI it i
C
C e mm e m
CALL ELEMOD(M,N2,II,JJ,KK, ELEMT)
C _________________________________________
C
I ES ehie e b i
CALL ASSEML(M,N,NWID,ELEMT,X,Y,EB,NODE,II,JJ,KK,RECMAT,PHI,AL,
& PHIP2, PHIR, PHIS, IBKK, IBJJ, IBOUND)
oD ittt
c
TS ity
CALL MODMAT (NWID,NBON, PHI,NODE, RECMAT, REMMAT, PHIS, IBOUND,
& IBKK,IBJJ,M,N, EB)
o T ittt ity
C
o o e
CALL GAUSS2 (REMMAT, PHI, NODE, NWID)
o D ettt
C
oIS e bt
CALL FLUXEG(EB,ELEMT,II,JJ,KK,RANGl,RANGZ,N,AL,PHI,X,Y,GAMMA,
$SIGMA,BETA,M,R,C,NODE,MG_DETH,ANGPLOT,XBETA,YBETA)
o Tttty
C

GAMMA_ 2B=GAMMA
SIGMA_2B=SIGMA
WRITE(*,340)GAMMA_2B, SIGMA_2B
340 FORMAT(lX,'GAMMA_2B=',F12.4,1X,'SIGMA_ZB=',F12.3)
C
C FORCE CALCULATION
C
DELTA_SIGMA=(SIGMA_lB+SIGMA_2B)—(SIGMA_1A+SIGMA_2A)
FORCE=DELTA_SIGMA/CHANGE
FORCE=MU*FORCE/4.
FJJ(I,J)=FORCE
WRITE(*,1070)XJJ(I},YJJ(I,J),F3J(1I,J)
1050 CONTINUE
DO 1060 I=1,1
XJJ(I)=XJJ(I)/C
DO 1060 J=1,15
YJJ(I,J)=YJdJ(I,J)/C
WRITE (IO, 8050)
8050 FORMAT({1X,4X,'X',12X,'Y',17X, 'FORCE")
1060 WRITE(IO,1070)XJJ(I),YJJ(I,J),FJJ(I,J)
1070 FORMAT(1X,F12.8,1X,F12.8,1X,F12.3)
STOP
END
C

C**********************************************************************
*
SUBROUTINE COORD(B1,B2,N1,EB,N,M,C,R,ANG],ANG2,PI, XJ,YJ X, Y,
&RANG1, RANG2 , RX, RY)



Al2

C*********************************-k************************************

*

C
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
REAL*8 X(800),Y(800),RY(300,10),H(300),RX(300,10)
INTEGER EB, Bl,B2
I0=9
RANG1l=ANG1*PI/180.
RANG2=ANG2*PI/180.
RANG= (ANG2-ANG1) /FLOAT (EB) *PI/180.
THETA1=RANG1-RANG
THETAZ=RANG2 +RANG
THETA=THETA1l
DO 20 I=1,N1
IF(I.NE.1)GO TO 30
H(I)=C-XJ*COS(THETA)-YJ*SIN(THETA)
GO TO 35
30 IF(I.LE.B1)GO TO 40
IF(I.GT.B2)GO TO 40
DELTA_TH= (RANG2-RANG1) /FLOAT (N)
GO TO 50
40 DELTA_TH=(RANG2-RANG1) /FLOAT (N)*0.5
50 THETA=THETA+DELTA_TH
H(I)=C-XJ*COS(THETA)-YJ*SIN(THETA)
35 CC=COS (THETA)
DELTA_H=H(I)/FLOAT (M)
DO 80 J=1,M+1
RX(I,J)=(R+C-H{I)+DELTA_H*(J-1)) *COS(THETA)
RY(I,J)=(R+C-H(I)+DELTA_H* (J-1))*SIN(THETA)
80 CONTINUE
20 CONTINUE
K=1
DO 120 I=1,N1
DO 130 J=1,M+1
X(J+(K-1)*(M+1))=RX(I,J)
130 Y({(J+(K-1)*(M+1))=RY(I,J)
120 K=K+l
RETURN
END
Cc

R R e e e A S R AR R R R R R R SR
*

SUBROUTINE ELEMOD(M,N2,II,JJ,KK,ELEMT)
Ok d ok ko kKKK R I KK KA KK A KRR I R KR A F Ak Ak Kk kR ok kFx Xk kA Rk kA kI AR IR IR TR K A Kk ok

*

C
INTEGER II(1000),JJ(1000),KK(1000),ELEMT, ENDE
INTEGER STARTE, T, END
I0=9
M1l=M+1
STARTE=1
ENDE=STARTE+ (M-1)*2
K=1
END=ELEMT-1

20 CONTINUE

T=0
DO 30 I=STARTE, ENDE, 2
II(I)=K+T
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JJI(I)= (I)+M1+1
KK(I) JJ(I)—l
(I+1)— I(I)
JJ(I+1 IT(I+1)+
KK(I+1)=JJ(I)
30 T=T+1

IF (ENDE.EQ.END)GO TO 40
STARTE=ENDE+2
ENDE=ENDE+M*2
K=K+M+1
GO TO 20

40 CONTINUE
RETURN
END

C

C**********************************************************************

*

SUBROUTINE ASSEML(M,N,NWID,ELEMT, X,Y, EB,NODE,II,JJ,KK,RECMAT, PHI,
& AL, PHISTAR1, PHIR, PHIS, IBKK, IBJJ, IBOUND)

C***************************************~k******‘k***********************

*

C
IMPLICIT DOUBLE PRECISION (A-H,0-2)
REAL*8 X(800),Y(800),B(3),C(3),AL(lOOO),PHI(800)
REAL*8 RECMAT (800,100) ,BDBMAT (1000, 3,3)
REAL*8 PHISTARl,PHIR,PHIS(BOO)
INTEGER IBOUND(2,800), ELEMT, EB
INTEGER II(lOOO),JJ(lOOO),KK(lOOO),INELE(3,lOOO)
10=9
DO 10 I=1,NODE
DO 10 J=1,NWID
10 RECMAT(I,J)=0.0
DO 20 I=1,NODE
20 PHI(I)=0.0
M1=M+1
M2=(N/EB*2+1)*M1l
M3=NODE-N/EB*2*M1
IBKK=1
DO 30 I=M2,M3,M1
PHIS(I)=PHISTARL
IBOUND {1, IBKK)=
30 IBKK=IBKK+1
IBKK=IBKK-1
IBJJ=1
DO 40 I=1,NODE,Mil
PHIS(I)=PHIR
IBOUND(2,IBJJ)=
40 IRJJ=IBJJ+1
IBJJ=IBJJ-1
DO 50 NN=1, ELEMT
I=ITI(NN)
J=JJ (NN)
K=KK (NN)
C WRITE(IO,41)X(I),X(J),X(K),Y(I),Y(J),Y(K)
41 FORMAT (1X, (6F8.6,1X))
AL(NN)=O.5*(X(I)*Y(J)+X(J)*Y(K)+X(K)*Y(I)—X(I)*Y(K)—X(K)*Y(J)—
Y(I)
&*X(J))



42

60
50

85

- 100
80
70

C

Al4

WRITE(IO,42)AL(NN)

FORMAT (1X,F12.8)

B(1l)=Y{(J)-Y(K)

B(2)=Y(K)-Y(I)

B(3)=Y(I)-Y(J)

C(1l)=X(K)-X(J)

C(2)=X(I)-X(K)

C(3)=X(J)-X(I)
INELE(1,NN)=ITI(NN)
INELE(2,NN)=JJ (NN)
INELE(3,NN)=KK (NN)

DO 60 NR=1,3

DO 60 NC=1,3

BDBMAT (NN, NR, NC) = (B(NR) *B(NC) +C (NR) *C(NC) )/ (4.0*AL(NN) }
CONTINUE

DO 70 NN=1, ELEMT

DO 80 IN=1,3

DO 80 JN=1,3

ID=INELE (IN, NN)

JD=INELE (JN, NN}

IF(JD.LT.ID)GO TO 85

RECMAT (ID,JD+1-ID)=RECMAT(ID,JD+1-ID)+3DBMAT (NN, IN,JIN)
GOTO 80

DO 100 NEWB=1, IBKK
IF(JD.NE.IBOUND(1,NEWB))GOTO 100
PHI (ID)=PHI (ID)-BDBMAT (NN, IN,JN) *PHIS (JD)
CONTINUE

CONTINUE

CONTINUE

RETURN

END

C**********************************************************************

*

SUBROUTINE MODMAT (NWID, NBON, PHI,NODE, RECMAT, REMMAT, PHIS,
IBOUND, IBKK, IBJJ,M, N, EB)

C**********************************************************************

*

C

40

IMPLICIT DOUBLE PRECISION(A-H,0-2Z)

REAL*8 PHI(800),RECMAT(800,100),PHIS(800),REMMAT(800,100)
INTEGER MM{10),NEND(10),IBOUND(2,800),IIBOUND(2,800)
INTEGER BON1, BONZ,EB

I10=9

M1=M+1

M2=(N/EB*2+1)*M1

M3=NUMN-N/EB*2*M1

DO 40 I=1,NODE

DO 40 J=1,NWID

REMMAT (I,J)=RECMAT(I,J)

NEND(1)=IBOUND(1, IBKK)

NEND(2)=IBOUND(2, IBJJ)

MM (1)=M2

MM(2)=1

DO 100 NN=1,NBON

BON1=MM (NN}

DO 110 I=1,NODE

IF(I.GT.NEND{NN))GO TO 110
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140

130

170

110
100

IF(I.EQ.BON1)GO TO 130
SUM=0.0

BONZ2=BON1

JJI=NWID+I-1

DO 140 J=I,JJ
IF(BON2.GT.NEND(NN) )GO TO 140
IF(J.NE.BON2)GO TO 140
SUM=SUM+REMMAT (I,J+1-I)*PHIS(J)
BONZ2=BONZ2+M1

REMMAT (I,J+1-I)=0.0
CONTINUE
PHI(I)=PHI(I)-SUM

GO TO 110

CONTINUE

DO 170 J=1,NWID
IF(J.EQ.1)GO TO 170
REMMAT(I,J)=0.0

CONTINUE
PHI(I)=REMMAT(I,1)*PHIS(I)
BON1=BON1+M1

CONTINUE

CONTINUE

RETURN

END
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C**********************************************************************

*

SUBROUTINE GAUSS2 (E,V,NNODES, NWID)

C******t***************************************************************

*

C

Nnnn

NnNnn

1000

2500

IMPLICIT DOUBLE PRECISION(A-H,0-2Z)

REAL*8 E(800,100),V(800),U(800)
TRIANGULARIZE

NWIDM=NWID-1
ISTOP=NNODES-1
ISTOP=NNODES-1

DO 1000 ID=1,ISTOP

DO 1000 JD=1,NWIDM
QUO=E(ID,JD+1) /E(ID,1)
V(ID+JD) =V (ID+JD)-QUO*V (ID)
KSTOP=NWID-JD

DO 1000 KD=1,KSTOP

E(ID+JD,KD)=E{ID+JD, KD) -QUO*E(ID, KD+JD)

CONTINUE
BACK SUBSTITUTE

U (NNODES) =V (NNODES) /E (NNODES, 1)
DO 3000 ID=2,NNODES

SUM=0.

IN=NNODES+1-ID

DO 2500 JD=2,NWID
SUM=SUM+E (IN, JD)*U(IN+JD-1)
CONTINUE
U(IN)=(V(IN)-SUM)/E(IN,1)



C

3000

4000

Al6

CONTINUE

DO 4000 ID=1,NNODES
V(ID)=U(ID)
CONTINUE

RETURN

END

C*************************~k********************************************

*

SUBROUTINE FLUXEG(EB,ELEMT,II,JJ,KK,RANGl,RANG2,N,AL,PHIl,X,Y,
$GAMMA,SIGMA,BETA,M,RR,CL,NODE,MG_DETH,ANGPLOT,XBETA,YBETA)

C**********************************************************************

*

c

C

20

IMPLICIT DOUBLE PRECISION(A-H,0-2)

REAL*8 AL(lOOO),PHIl(SOO),X(800),Y(BOO),MG_DETH,ANGPLOT(IOOO)
REAL*8 BETA(lOOO),BETAX(lOOO),BETAY(lOOO),B(BOO),C(800)
REAL*8 XBETA(1000),YBETA(1000)

REAL*8 RANG1,RANG2,GAMMA, SIGMA,RR,CL,DELTA_TH, DELTA_L
INTEGER ELEMT,EB,II(1000),JJ(1000)

INTEGER KK(1000)

I10=9

DO 20 I=1,ELEMT

BETAX(I)=0.0

BETAY (I)=0.0

C CALCULATE ELEMENT CENTER

c

C

25

DO 25 ICENT=1,ELEMT,2

IE=II (ICENT)

JE=JJ (ICENT)

KE=KK (ICENT)

XMID= (X (IE)+X(KE)) /2.
YMID=(Y(IE}+Y(KE))/2.

XBETA (ICENT) = (XMID+0.5*X (JE) }
YBETA (ICENT) = (YMID+0.5*Y (JE) )
IE=II(ICENT+1)

JE=JJ (ICENT+1)

KE=KK (ICENT+1)
XMID=(X(IE)+X(KE))}/2.
YMID=(Y(IE)+Y(KE)) /2.

XBETA (ICENT+1) = (XMID+0.5*X(JE)) /1.5
YRETA (ICENT+1)=(YMID+0.5*Y(JE))} /1.5
CONTINUE

C CALCULATE FLUX DENSITY

C

DO 30 NN=1,ELEMT
I=II(NN)

J=JJ (NN)

K=KK (NN)

B(I})=Y(J)-Y
B(J)=Y(K)-Y
B(K)=Y(I})-Y
C({I)=X(K)-X
C(J)=X(1I)-X
C(K)=X(J)-X
BETAX (NN) =



BETAY(NN)=—(C(I)*PHIl(I)+C(J)*PHIl(J)+C(K)*PHIl(K))/(2‘*AL(NN))

C WRITE(*,100)BETAX (NN) , BETAY (NN)

100 FORMAT(2X, 'BX=',F15.4,1X, 'BY=',F15.4)
ANGPLOT (NN) =ATAN (BETAY (NN) /BETAX (NN) )
30 BETA(NN)=SQRT(BETAX(NN)**2+BETAY(NN)**2)

C WRITE(*,110)
110 FORMAT (2X)
DELTA_TH={RANG2-RANG1) /FLOAT (N) *0.5
DELTA_L=2.* (RR+CL) *SIN(DELTA_TH)

C DELTA_L=0.1
C WRITE(*,38)DELTA_TH,DELTA_L
38 FORMAT(lX,‘DELTA_TH=',F12.9,1X,'DELTA_L=‘,F12.9)
GAMMA=0.0
M2=M*2

NSTART=M2* (N/EB*2+1)
NEND=ELEMT-N/EB*2*M2
DO 40 I=NSTART,NEND, M2
40 GAMMA=GAMMA+BETA(I)

GAMMA=DELTA_L*GAMMA*MG_DETH

c GAMMA=GAMMA*MG_DETH
SIGMA=0.0
DO 50 I=1,ELEMT

50 SIGMA=SIGMA+(BETAX(I)**2+BETAY(I)**2)*AL(I)*MG_DETH

RETURN
END
C

Al7

C**********************************************************************

SUBROUTINE GAUSS1(E,V,NNODES, NWID)

C***********************'k**********************************************

C
IMPLICIT DOUBLE PRECISION(A-H,0-2Z)
REAL*8 E(200,200),V{800),U(800)

C

c TRIANGULARIZE

Cc

NWIDM=NWID-1

DO 1000 ID=1,NNODES

DO 1000 JD=1,NWIDM
QUO=E(ID+JD, ID) /E(ID,ID)
IDP=ID+NWIDM
V(ID+JD) =V (ID+JD)-QUO*V (ID)
DO 1000 KD=ID, IDP

E(ID+JD,KD)=E(ID+JD, KD} -QUO*E(ID, KD)

1000 CONTINUE

BACK SUBSTITUTE

NN

U (NNODES) =V (NNODES) /E (NNODES , NNODES)

DO 2000 ID=2,NWID

SUM=0.

IN=NNODES+1-1ID

NSTOP=NNODES

INP=IN+1

DO 1500 JD=INP,NSTOP

SUM=SUM+E (IN,JD)*U(JD)
1500 CONTINUE

U(IN)=(V(IN)-SUM)/E(IN, IN)
2000 CONTINUE



2500

3000

4000

NWIDP=NWID+1

DO 3000 ID=NWIDP,NNODES
SUM=0.

IN=NNODES+1-ID
NSTOP=IN+NWID-1
INP=IN+1

DO 2500 JD=INP,NSTOP
SUM=SUM+E (IN, JD) *U(JD)
CONTINUE
U(IN)=(V(IN)-SUM)/E(IN, IN)
CONTINUE

DO 4000 ID=1,NNODES
V{ID)=U(ID)

CONTINUE

RETURN

END

Al8
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APPENDIX B - COMPUTATIONAL METHODS INCLUDING METAL
REGIONS

B.1 Modelling of Magnetization Curve

If hysteresis and anisotropic effects are neglected, the magnetization function, or B
vs. H function, for a ferromagnetic material can be represented as a continuous, single-
valued nonlinear function. It is difficult, however, to find a single analytical expression
that accurately represents the function over the entire useful range. A procedure using
cubic spline fits recommended by Silvester et al.[B1] is used in the present work to model
the magnetization characteristic of silicon sheet steel. The graphical data for the
characteristic were taken from Smith [B2].

The procedure for modelling the experimentally determined relationship between B

and H is as follows:
First, convert the data from a permeability representation (B vs. H) to a reluctivity v

vs. B2, the square of the flux density. The two methods of representing the data are shown

in Figure B1 and Figure B2.

Silicon sheet steel

1.4 1
12
1.0
B(T) o.a:
0.6-
0.4 -
0.2

0.0 T T T v T Y T T T T
0] 500 1000 1500 2000 2500 3000
N(A.t/m)

Figure B1. Magnetization of silicon sheet steel
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Figure B2. Reluctivity vs. square of flux density

Next, evenly divide B2 into n subintervals. Then within an interval between end
points i1 and i2 the value of v and the slope « of the v-B2 curve can be calculated by the

cubic interpolation formulae
2_R2
_ B™-Bj

B% B Y

v(x) = (2x3-3x2+1) vi1+{-2x3+3x2) vipH{x3-2x2+x) ki1 Hx3-x2) ki (1.2)

K(x) = AV = L ((6x2-6x) vi +{-6x2+6x) vip+H(3x2-4x+1) ;1 +{3x2-2x) K5} (1.3)
dB* B%-B}

(% = (12x-6) vi1H-12x+6) virH6x-4) ;1 H6x-2) Kj2 (1.4)

The values of v; are known from the B-H curve and x; of (2) and (3) can be
obtained by setting a constraint that the slope of k with respect to B2 must to be continuous
at the interval ends. For instance, if v-B2 is divided into 6 sub-segments as shown in Fig.
2, for two adjacent intervals from node i-1 to node i and from node i to node i+1, the

gradient at the right end (x=1) is evaluated using (1.4)



[d_}(} = 6Vi_1-6Vj+2Ki-]+4Ki
dB2};

Similarly, calculating the quantity at node i at x=0 in the second interval

[_di} = -6Vi+6Vi+ 1 ‘4Ki'2Ki+1
dB2};

Equating (5) and (6)
Ki1H4Ki+Kiy1 = 3Vig1-3vig

For a v-BZ curve with 6 subintervals, expanding (7) leads to
K1+4K2+K3 = 3v3-3v)
Ky+4K3+K4 = 3V4-3V7
K3+4K4+Ks = 3v5-3v;
K4+4Ks5+Kg = 3vg-3vy
Ks+4Kg+K7 = 3v7-3Vv5

B3

(1.5)

(1.6)

(1.7)

a set of 5 simultaneous linear equations with 7 unknowns. However, for the leftmost node

at B=0, v can be easily obtained as a constant from B-H curve, leading to x;=0. For k7,

different values must be tried until the series of k; from (7) are positive and monotonic.

With the above special treatment of leftmost and rightmost nodes, the unknowns are

reduced to five

4Ky+x3 = 3v3-3vy
Kr+4K3+K4 = 3v4-3vy
K3+4K4+Ks5 = 3vs-3v;
K4+4Ks+Kg = 3vg-3vy
Ks5+4Kg = 3vg-3v4-X7

Finally, use the calculated x; in (1.2) and (1.3) to check the predicted the curve of

H vs. B as illustrated in Figure B3.
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B.2 Iteration for Flux Distribution: Newton-Raphson Method

To calculate the forces from a magnet accurately it is necessary to obtain solutions
to the Poisson equation consistent with the magnetization characteristic of the metal. A
Newton-Raphson iteration algorithm has been developed by Silvester et al.[B1] and is
suggested by many researchers working in this field due to its rapid convergence and
unconditional stability. After evaluation of several iteration methods, the Newton-Raphson
algorithm was found to converge faster and more stably than other methods, but it can not
well constrain the saturated magnetic flux density because of the sharp increase of the
reluctivity beyond the saturation point. However, with an undercorrecting parameter for
the residual part of the iteration as well as an additional successive overrelaxation (SOR)
form for a weighted combination of the reluctivity obtained at step n and step n+1, the
Newton-Raphson algorithm offers a satisfactory solution.

A summary of the iteration algorithm based on [B1] is presented below.

As presented in the previous report, the magnetic potential field will be obtained by

minimizing the energy functional

é(A):f (W-JA) dQ (2.1)
R
here W is the density of magnetically stored energy

W=[ H dB (2.2)

The requirement to minimize functional (2.1) is equivalent to demanding

d
A 0. (2.3)

Expanding (2.3) will yield N simultaneous nonlinear equations whose solution A

describes the desired result.

To construct an iteration process, expand (2.3) in a Taylor series
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g _ | 9§ 9%
(E)Amfx - (E)A-*- ?’ (M)AAAj (2.4)

Neglecting those terms beyond the second derivative term will yield a matrix

equation
AA; = - 2.5
! (aAiaAj A+aA \OAi [asaa (2.3)
Then a successive correction will be formed based on (2.5):
9% ' [a
AM+D) — A ( ) 2.6
0AOA; [asan \OAi Ja+an (2.6)

To apply the iteration process (2.6) for finite element formulation, we calculate the

first and second derivatives of (2.1)

& | (oW

E_fk(a—Ai-J)dQ 2.7)
0% W
JAidA; fk 0A;dA; a0 (2.8)

The field vector H is related to the flux density B by nonlinear reluctivity,
H=v(B%B (2.9)

Therefore (2.2) will become

W= % f v(B?) d(B2) (2.10)

Within an element, the potential is given by an interpolation form suitable for finite
element calculations
A=) AN (2.11)
i
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Then the squared flux density in the element will be given by

B2=Y Y AiA;VN; VN, (2.12)
i
Differentiating by the chain rule,

QE:V(Bz) S AVN;- VN (2.13)
k

0A;

?W

0ADA] VVN;-VN; +2d 2% Y, AnAVNG VN (VN,-VN;)  (2.14)

n

Hence the residual vectors of the iterative process (2.6) will be formed by joining

the individual element contributions formed according to (2.7) and (2.13)

L(g—%d)dﬂzg Akf

R

vVNk-VNidQ-I ] dQ (2.15)

R

azw — .. . dv ) ‘ ' .
[a—_dAiaAj Q_LVVN, VN; + 2% ; AmAnf @(VNm VN ) (VN VN;) dQ

R

For a first-order triangular element, define

2
IéaA—i;vA—de:f VVNi-VNj+ZI VN VN; dQ = Sy (2.17)
R R R

and then the matrix contribution will be

oW
L 5A 90 _Viz SkiA; (2.18)
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%W
f SADA IR = VSijt 2 2 AnAdSinSyn (2.19)
m n

The second term of (2.19) can be simplified to

2 dv
Ardez Y. AnAsSimSjn= Uil (2.20)

where
Ui= Y. SijAj (2.21)

So that the Jacobian matrix contributions are given, finally, by

Pij =V SIJ + Alddé U,UJ (222)

T
Within every iteration, the reluctivity v is weighted by SOR:
v D=y 4 g y*-y () (2.23)

where v* is calculated from the approximate magnetization characteristic.

The iteration process is illustrated by the program flow chart of Figure B4.



Compute element coeff.
matrices and source vectors

Set initial Ajend v, and slop k,

- Calculate B2

= Predict vi*' and k! using curve fitting

Calculate v ysing SOR

- Calculate residual
Y=8A-]J
Jacobian matrix
P
- |
Modify P with B.C.

Solve SA=ply

al'=hnrwbh,

No

Test convergence

Yes
Exit

Figure B4. Program flow chart
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B.3 Efficient Calculation of Force
In static electromagnetic field analysis, the virtual work principle is commonly used

to calculate magnetic force acting on a rigid, current-free and movable body:

Fg=- aﬂ (3.1)

ds

where ds is an infinitesimal distance along the s-direction and W is the magnetic energy
stored within the computation region. Therefore, to obtain magnetic force, the suspended
body is subjected to a virtual displacement, then the field quantities are computed at both
positions. A general procedure is first to solve the governing equation of a field problem
with specified boundary conditions. For example, a static 2-D magnetic field will be

expressed as a partial differential equation of Poisson's type:
VVVA,(xy) = I,. (3.2)

Then the magnetic flux density will be obtained by calculating the curl of the vector

magnetic potential

B =V xA. (3.3)

Magnetic energy finally is calculated by an integration over the volume containing
the total distributed magnetic energy in terms of field quantities

w=1|B2gy (3.4)
2[ 1)

In a numerical analysis for an electromagnetic field problem, the computation
region may be bounded by irregular contours and may also involve several different
materials. So a discretization of the domain may require many elements and the resulting
force calculation would be very time-consuming. The problem becomes even more severe
when an iterative method must be used to deal with nonlinearities such as the magnetization
characteristics of different magnetic materials. To develop a more efficient and forthright
algorithm for magnetic force calculation, Coulomb derived an elegant formula for
implementing the virtual work principle without the need for a second field solution
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[B3,B4]. A mapping approach is used so that the calculations of differential terms of the
field quantities have been switched to the calculations of differential changes of the
coordinates in the Jacobian matrix. This approach not only saves the time that would be
required for the second field solution, but may also improve the accuracy of the solution.
It reduces the computer round-off error since the domain of the force calculation includes
only the distorted elements during a virtual displacement. In the present research the
principle of Coulomb's work is applied to derive the force calculation equations for two
theoretical models: a linear solution for magnetic potential based on Laplace's equation,
which was described in detail in a previous report, and a nonlinear Poisson's equation

model.

B.3.1. Force Calculation using Linear Potential Model

With an assumption of infinite permeability of magnetic material, the computation region
will only involve the air gap between the magnet poles and the suspended rotor. The
fundamental equation of the source-free field then represents the curl-free nature of the

magnetic field intensity

VxH=0. (3.5)

With the vector identity

Vx V=0, (3.6)

the field intensity can be written as the gradient of the magnetic potential

H=-V¢. (3.7)

Since the divergence of magnetic flux density is zero everywhere

V -B=V pyH=0. (3.8)

substitution of (3.8) into (3.7) gives the Laplace equation

2

Vi =0. (3.9)
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If the triangular linear interpolation formula

o(xy) = X Nix.y) @, (3.10)
i
is used to approximate the potential field and then the energy functional
e=|1v (Vo[ dr, (3.11)
R
is minimized as explained in the previous report, the solution of nodal potential values is
found
—r
Do =[@1, @2, ., D) (3.12)

Using the energy from equation (4), the force can be calculated from the virtual work

M
FS=§W—=3{2[—Bz—dR},. (3.13)

Jds 0s| i 2p

principle of (1)

where M is the total number of the elements. The Jacobian matrix can be used to transfer
the global coordinates into local ones and to map a function between global and local

coordinates

J f(x,y) dR= J flx(Ly,La) y(L1,L2)) Bl dL,dLy.. (3.14)



B13

The force then can be expressed as a function of flux density and local coordinates

_\:2 B2 ﬂdleLz]
=i {ﬂgo)ﬂ fjag}dleLz. (3.15)

The first term inside of the integral will be

v o
— 3.16
-(7410) G19

With the equations of the mapping given as

ogp _dgp Ox 9% 9y

8L1 0x 8L1 ay 8L1

3.17)
d0p _d0p 3x 90 9y
oL, dx dL; dy dL,
or in a matrix form:
EAES
oL \_j| o (3.18)

EH
8L2 ay



where the Jacobian matrix is

So from (1-19),

SO that

Bl4
ox dy
— dL; oL 1
T= , (3.19)
ox oy
oL, dL,

(3.20)
T -1
8\H=_8J\ JL, , (3.21)
ds ds o
oL,
» the unit matrix 15 used
T I
i) B gy (3.22)
ds Js
oIt a9y :

(3.23)



B15

Substituting (1-17) into (1-16), we find

—~|

H _ 3.

5 H (3.24)

QJlQJ
»

and then substituting (1-18) into (1-12), we finally have

B2
ds 2ho

i

y _
Fs=), {-ETT“EEH+—|ﬂ'IgI—ﬂ dR . (3.25)
S

Following a general routine of a calculation for the Jacobian matrix, we have

X13 Y3

J =[ ] 3.26)
X23 Yo3 (
where X,Y are nodal coordinates and the following forms are used to simplify the
expression
Xij = Xi-Xj, Yij = Yi-Yj. (3.27)
With an infinitesimal displacement of the nodal coordinates, we can write
AX;; AYj; |
dJ A A
S ° (3.28)
9 | AXy; AYp
As As
and
M _ AX13Y23 - Yi3X23) (3.29)
ds As

Geometrically, a suspension system undergoing a virtual displacement could be
represented by three parts, a region of the magnet as a fixed part, a region of the levitated
body as an entirely moving part and a free space region between the fixed and moving parts
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as a distorted part. Equations (1-21) and (1-22) are discussed separately for each of these

three different regions.

A. For a fixed element
AXj; = AY;; =0, (3.30)
SO aﬂ
al
=—=0. 3.31
35~ 3 (3-31)
B. For an element within an entirely moving body, the element shape will not be

changed at all, as illustrated in Fig.BS,

(2) 4

Figure BS. An element in a rigid moving body is moved from location 1 to 2.

SO
Xy = X2 - xM x® - x{V)= aX - AX = 0, (3.32)

INCER 1R Y‘” {Y?-v{")=aY-av=0, (3.33)

where the superscript represents the moment before and after the displacement. For the

same reason,
ATXY o YiiXag] = (X3 Yo -0 Vo) (VXY X} D) = 0, (3.34)

since

x‘z.’_x(” Y(z) v X<2> X(D Y(2> Y(” 0. (3.35)

ij nj’

So the same conclusion is reached:
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o aﬁ] =0. (3.36)

os 0s
Applying the above results for (1-19), all those elements in the moving and fixed bodies

can be neglected during the virtual displacement. Only the distorted elements need to be

considered for the force calculation:

Fo= D, -BT7J! a—Jﬁ+E’—|ﬂ‘1 ol dR . (3.37)
distor. ds 2o ds
R

Since the distortion of the free space is arbitrarily decided, we may just take one layer of
the elements surrounding the moving part as shown in Fig.B6 where, for more accurate

calculations, the diagonals of the gap 1 and 2 are symmetrically arranged.

Figure B6. Geometry of one layer of elements surrounding the rotor where,

X fixed node

O

moving node.
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If the first term of (1-23) is expanded to matrix form

AXy3  AYi3
) g A A
terrnl{-I—BTJ'l—H Aaz-%9[¢x,¢y][§23 ;31] ’ ° {¢x},(3.38)
ds 32 413 AXp3 AYy3 Py
L As As

where A, is the element area, all the quantities in term 1 are known except for the derivative
of the Jacobian matrix. Since one rectangular shape consists of two triangular elements
which have different ranges of fixed nodes and moving nodes, the matrix has to be
determined separately according to the elements with odd or even numbers. An example of

the nodal range is shown in Fig.B7.

k i
i

(1) ,

kg ol

Figure B7. The range of fixed and moving nodes of the elements.

For element = 1,3,5,...... , odd numbers, if s = X, since

@ (1) @ (D
AXj XX {x-x")
Ax Ax

» (3.39)

it is easy to determine that

AX 3 =0, AX23 -1 AY 3 =AY23 _
AX Ax AX Ax

0. (3.40)
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So we have _
a-":[ 0 0]. (3.41)

Repeating the above calculations, we obtain the matrix fors =y

259

The elements with even numbers and furthermore, the second term of (1-23), also can be
handled with the same calculation above. The final forms of the force components along x

and y-directions respectively as a summation of one layer elements are obtained as

Fymh0 {Z [qax((»st1+¢yX13)+4¢x+¢y)Y13

2 odd

+ [ ¢x(¢xY23+¢yX32)""(¢x+¢y)Y23}}

even

3.43a

Fy= Pho {Z [¢y(¢xY3l+¢yX13 4¢x+¢y)xl3} 2 [¢y(¢xY23+¢yX32)+%(¢i+¢§)X23}}’

2 odd even
(3.43b)
where D is the depth of the magnet.
To examine the accuracy of the equations (1-24), the magnetic suspension force of an
uniform magnet shown in Fig.B8 has been calculated and a comparison between analytical

and numerical results is shown in Table B1.

MMF=1A x 400T

&

C=0.03 in.

Figure B8. Test electromagnet



Table B1. Comparison of Analytical and Numerical results
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Force(N) | Force(N)

we=0.0 we=0.7 | CPU Charge($)
Analytical
soluégﬁ 19.68087 |218.67681
Numerical one
layer solution 19.68088 |218.67640| 1.80sec. | 1.27
Numerical whole . ! 30
region solution 19.68109 |218.70340( 1.5¢ sec. .

2. Force Calculation using Nonlinear Flux Model
The methods described above will applied to the case where the flux is determined

by Poisson's equation. The only difference is that the magnetic field is no longer current-

free and the flux density will be the curl of the vector potential

B=VxA. (3.44)
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If there is only a z-component of current density, then

_ 9

2, %
dy ox

B, (3.45)

The computation region for the force calculation will be one layer of elements

adjacent to the movable rotor and the final equations are expressed in the form of (1-27).

Fx=2—Eg » [¢y(¢x(X32+X 13-9y(Y23+ Y3 )}*g¢i+¢§)(Y23-Y13)]

odd

+ 3, [oloyYasoxahelloropa (3.46)
Fy:ﬁ » [¢x(¢y(Y23+Y3l)'¢x(X32+X13))+%(¢)2(+¢§kxl3‘x23)]
odd
+Y [¢x(¢yY23'¢xX32)'%(¢)2(+¢§)X23] (3.47)

even

A comparison of the results of this method to those of the original method, in
which the energy contained in the entire solution region is used in calculating the virtual

work involved, and the new one is displayed in Table B2.

Table B2. Comparison of whole region and one layer calculations

Force(N) | Force(N)
we=0.0 wWe=0.7 CPU Charge($)
xle=0.7
One laye
calculation 19.59116 |186.24043( 42.99 sec.| 11.40
Whole region
calculation 19.67500 {186.90760 {1 min38 sec 26.79
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Abstract

Active magnetic journal bearings are increasingly being used in a wider variety of
turbomachinery applications because their magnetic forces can be controlled and thus,
can be used to minimize any rotor vibration. However, most magnetic bearing research
has ignored the curved shape of the magnet and has consequently inappropriately
modeled its forces. By using an accurate model of the two-dimensional forces of the
curved magnets, this paper models the unbalanced rotating dynamic motion of the shaft
which is being minimized by two opposed pairs of axis independent, proportional-
derivative flux controlled magnetic bearings. The nonlinear dynamic behavior of the rotor
is then examined using the resulting equations of motion via numerical simulation and the
harmonic balance method. This 'dynamic analysis consists of examining the shaft's free
vibration and its potential energy and maximum steady-state amplitude versus the natural

frequency ratio for varying control and system parameters.
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Chapter 1

Introduction

A typical magnetic suspension system, see Figure 1.1, is comprised of two main
parts, the actuator and the controller. The actuator, which often consists of two
opposed pairs of magnets, see Figure 1.2, is responsible for levitating the shaft. While
the controller, which consists of the feedback sensor(s), control electronics, and
power amplifier(s), is used to regulate the forccs‘ of the actuator by using the signal
from the sensor(s) and, depending on what is needed to minimize the shaft vibration,
either increases or decreases the current supplied to each of the magnets.

In recent years, this general type of active magnetic bearing has increasingly been
used in a variety of applications. They are now found in centrifugal compressors,
electric power plé.nts, petroleum refining, méchine tools, satellites and military
weapons (O'Connor (1992)). This rise in popularity can mainly be attributed to two
advantages that magnetic bearings have over the more conventional fluid film
bearings. First, because in the magnetic actuator the rotor is levitated and no contact
occurs between it and the magnets, there is practically no friction and thus, there is no
wear and no need for lubricants. The other benefit of magnetic bearings is that they
have the ability to minimize any shaft vibration. In recent years, this control of the

shaft vibration has been the main topic of most of the magnetic suspension research
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and has focused on two distinct subareas:
1. The most suitable controller and control strategy
2. Theoretically investigating the effectiveness of the control scheme.

In trying to determine the optimal magnetic bearing control system, most
researchers have experimented with digital and analog controllers and variations on
proportional-derivative (pd) schemes. For example, Williams et al. (1991)
experimentally compared the differences of using digital and analog pd controllers to
reduce the amplitudes of a multimass flexible rotor. They found that in both control
systems, increasing the stiffness tended to decrease the response at low speeds and
increase the amplitudes at high speeds and increasing the damping minimized the
maximum displacement for every forcing frequency. Williams et al. (1991) also
concluded that including second derivative feedback in a digital pd controller gave
the system a wider bandwidth while introducing integral feedback only affected the
amplitude at the first critical speed. The possibility of using a digital pd controller
was also experimentally examined by Scudiere et al. (1986); however, in their system
the previous inputs were given uneven weight. The results showed that when the most
recent inputs are heavily weighted the output responds slowly but is very smooth and
that if the previous inputs are given less weight then the motion becomes less damped
but responds much more quickly.

The other popular magnetic bearing research topic is to theoretically investigate
controlling the motion of a flexible rotor with a magnetic bearing. Lee and Kim
(1992) designed a suboptimal output feedback controller based on a truncated modal
equation of the distributed parameter system. This control scheme minimized the
displacement at the first critical speed but was inadequate at other supercritical -
frequencies. Nonami et al. (1990) experienced similar problems at high frequencies as

Lee and Kim (1992). Their flexible rotor model was based on the finite-element

3
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method and the control scheme was formulated by using eigenvalue analysis. Maslen
and Bielk (1992) also examined the stability of a rotor supported by a magnetic
bearing. They took into account sensor-actuator noncollocation and controller
bandwidth; however, the performance of the model was not tested.

However, with the exception of Imlach et al. (1991) and Knight et al. (1992) there
has been very little research completed which has measured the forces of the magnet.
Imlach et al. (1991) compared predicted stiffness and force values in a closed-loop
controlled magnetic bearing with their experimental counterparts. The agreement was
good at small eccentricities; however, as the eccentricity increased the predicted and
measured values began to diverge. Knight et al. (1992) also measured the forces from
a magnet. They found that a single curved magnet produced forces in both the
horizontal and vertical directions and that the horizontal force, assuming that the
center of the magnet is situated directly on the y- or vertical axis (see magnet one in
Figure 1.2), is proportional to the vertical force multiplied by the horizontal
displacement. Most magnetic bearing papers, including Lee and Kim (1992), Nonami
et al. (1990) and Maslen and Bielk (1992), have ignored this additional force
component in their formulation of the vibration of the rotor.

This thesis will show that including the often ignored normal force of a curved
magnet in a magnetic bearing model will cause the motion of the unbalanced shaft to
be significantly different than was previously estimated by earlier linear models. This
will be accomplished by first using the conclusions of Knight et al. (1992) to derive
brand new equations of motion for a shaft which is encircled by a flux controlled
magnetic journal bearing, chapter 2. Then in chapter 3, the resulting coupled,
nonlinear equations of motion and two techniques, numerical simulation (fourth-order
Runge-Kutta) and the harmonic balance method, will be used to examine how the

introduction of the normal force component changes the potential energy and

4
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dynamic motion of the shaft for varying control as well as physical parameters. In the
final section, chapter 4, the results- from these two chapters will be briefly

summarized and some suggestions will be made concerning future work.
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Chapter 2

Modeling Shaft Vibration

The magnetic bearing model used in the upcoming analysis is comprised of a

shaft and two opposed pairs of flux controlled magnets, see Figure 2.1. Each of the

//' Coils

N

Bearing

Figure 2.1: Magnetic bearing and shaft coordinate system.

magnet pairs is identical and is subjected independently to proportional and
6
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derivative axis control. In addition, the circular shaft is being externally rotated and
its center of mass is not necessarily coincident with its actual geometric center. This
rotating unbalance of the shaft, in addition to the forces of the magnetic actﬁator,
cause the rotor to vibrate. The following section models these forces and the motion
of the shaft, nondimensionalizes the resulting equations and analyzes appropriate

parameter values.
2.1 Dimensional Equation Derivation

The magnets in Figure 2.1 are labeled one through four. In the initial portion of
the equation derivation, the opposed pair two and four will be ignored and full

attention will be given to the forces from the magnet pair of one and three.

2.1.1 The Vertical Forces of Magnets One and Three

The y-directional forces of these two magnets, Fy; and Fy3, are approximated by

one-dimensional magnetic circuit theory and are written as

aBZ
F, = —2 2.1)
AT
and
aB2
Fyy = ——2 22)
Ko

where B is the magnetic flux density of each magnet, a is the cross-sectional area of

the pole face and L, is the permeability of the free space. The total vertical force

produced by the pair of one and three is simply the sum of (2.1) and (2.2),

7
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Both flux densities in this expression are equivalent to the sum of their bias and

control flux densities, denoted by subscripts b and ¢ respectively,

B; =Bjp +Bie (2.3)
and
B3 =Bsy, +Bs,, (2.4)
and can be replaced to give
a 2 2
Fos= u_'[(Blb +By.)" —(Bsp +Bsc) ] (2.5)
[}

Since both magnets are identical, their bias flux densities must also be equivalent,

By, = B3y, = By,. The control flux densities of the two magnets however, will have
opposite signs, B;. = —Bs, = B, so that each magnet will force the shaft toward the
origin. By replacing Byy, Bjc, Bsp and Bs. in equaton (2.5), with their equivalent,
either By or B, expanding the bracketed terms and simplifying, Fyi3 can be

rewritten as

4a
Fyz = :L_BbBc- (2.6)

]

The control flux, B, is a function of the vertical displacement, y, and velocity, y, the
bias flux density, By, the proportional control coefficient, k, and the derivative

8
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control coefficient, v, and is equivalent to
B, = —kBpy — By @.7)

Replacing B, in equation (2.6) with (2.7) yields the most useful representation of the

vertical force caused by the magnet pair one and three,

4 .
Fyp3 = —f—B%(xy-»w) | 2.8)

2.1.2 The Horizontal Forces of Magnets One and Three

It was stated earlier, that Knight et al. (1992) found that a curved magnet
produced a normal force (in the x-direction for magnets one and three and in the y-
direction for magnets two and four) which was proportional to its normal
displacement multiplied by the principal force (the force perpendicular to the normal
force) of the same magnet; thus, the x-directional forces from magnets one and three

can be written as

F,q = x|y (2.9)

and
F,3 = 03x[Fys| (2.10)

where o; and a5 are the normal force proportionality constants and x denotes the

horizontal component of displacement. The total x-directional force from these two

magnets is simply obtained by summing (2.9) and (2.10),
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Fy3 = x(allell + a3|Fy3|).

Because both magnets are identical, and therefore must have the same physical

properties, ¢; and &3 can be replaced by o to give
FX13 = ch(|Fy1I+|Fy3|).
F,13 can be rewritten as

Fyi3 = —ox(B? +B})

o]

by substituting the absolute of equations (2.1) and (2.2) for Fy1 and Fy3. It is also

useful to substitute (2.3) and (2.4) for B, and Bs,

Fyps = uiax[(Blb +Byc)" +(Byy + Bs.)’|. @.11)

Q

This expression can be further reduced by replacing each flux density term with its

respective equivalent, either By or B_, and simplifying,

2
F3 = u—aax(B% +B2). 2.12)

o]

Finally, replacing the control flux density in (2.12) with (2.7) and expanding puts .

F13 in its most practical form,

10
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2 ry
Fops = faxB%(1+ K2y +2ipyy +v752). (2.13)

2.1.3 All Other Forces Acting on the Shaft

A similar procedure can be used to obtain the vertical and horizontal magnetic

forces from magnets two and four,

Fyp4 = -i—aayB% (1+x%x% + 2007k + y747) (2.14)

o]
and

4a .
F,p4 = -—E—Bg(m-i-yx). (2.15)

o

These two equations, along with (2.8) and (2.13), represent an accurate mathematical
description of the forces from the magnetic actuator which act on the shaft. The shaft
however, will also be subjected to an additional force which results from it being
rotated and its mass being unevenly distributed. This additional load is analogous to
rotating unbalance in rotor dynamics and its components can be written as

2 cos wt, in the x-direction, where m is the

me®? sin wt, in the y-direction, and mew
mass of the shaft, e is the distance from the geometrical center of the shaft to its
center of gravity and o is the forcing frequency. By applying Newton's second law of
motion, Y. F =ma, in each direction, the nonlinear, coupled equations of motion

which describe a shaft that is unbalanced, rotating and subjected to flux controlled

magnetic fields are obtained,

my = —%Bﬁ{xy +vy— %y(l +x2x? + 2Kyxx + szz)} + mew? sin ot (2.17)

o

11
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. 4 . . )
mk = —iBg[Kx + vk —%x(1+ x2y? +2xyyy +72y2):l +mew?coswt.  (2.18)

[s]

In both of these equations, note that all of the linear displacement and velocity
terms are a direct result of the principal forces of the four magnets (the forces which
can be modeled using one-dixxicnsional magnetic circuit theory). In contrast, the
normal forces are responsible for every coupling and nonlinear term in (2.17) and
(2.18); thus, including the normal forces in the equations of motion of the shaft
introduces the system to instabilities by decreasing its linear restoring forces, i.e.

making it less stiff.
2.2 Nondimensionalization of the Equations of Motion
To make the upcoming analysis easier and the results more physically

meaningful, (2.17) and (2.18) will be nondimensionalized by replacing the variables

in both equations with the following,

x = Xc y=Yc
t=T/w, 0=Q/w,
x=K/c y=I/cw,
a=A/c e = Ec,

where all capitals represent the nondimensional quantities, ¢ is the radial clearance
between the rotor and the inner surface of the controlling magnets and the uncoupled

natural frequency (a = Q) is equal to

12
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4axB2
®, = | —Zb (2.19)
mi,

Making these substitutions results in the following ordinary differential equations,

2
cmwlY” = -i‘?-h(KY +TY’ - ‘—;‘-Y(1 +K2X2 + 2KTXX' + rzx'z))
Ho
+cmw2EQ? sin QT
and
2
cmw?X” = 2285 (KX +TX - %X(l +K2Y? 4+ 2KTYY' + FZY’Z))
Ho

+ cmcoiEQ2 cosQT

where a prime denotes differentiation with respect to nondimensional time. By

dividing both of the two previous expressions by cmcn,z1 and replacing the remaining

squared uncoupled natural frequency terms in the resulting equations with (2.19)

gives
2
Y = _"'ﬂ%B_bz(KY +TY - éY(l +K2X? + 2KTXX' + T2X "2 )) +EQ?sinQT
dacmxyL,Bg 2
and
2
X7 = - 2B, (KX +TX - éx(1 +K2Y2 4+ 2KTYY’ +T2Y"2 )) +EQ2cosQT
4acmxp, Bt 2

The most useful forms of the nondimensional equations of motion are obtained by

canceling all like terms and replacing cx with K,

13
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Y” = —-IIE(KY +IY’ - i;—Y(l +K2X? + 2KIXX' + I‘ZX’Z)) +EQ%sinQT (2.20)

X = —%—(KX +TX - %x(1 +K2Y? +2KIYY' + I‘ZY’Z)) +EQ%cosQT (2.21)

Note that, in obtaining (2.20) and (2.21), ¢ and the uncoupled natural frequency,
®,, were chosen as the two variables which were used to aid in the
nondimensionalization of equations (2.17) and (2.18). Both variables were selected
over other parameters for different reasons. First, the choice of ¢ allows the dependent
variables in the governing equations of motion to become X, X, Y, Y and T. As a
result, the numerical solution becomes more meaningful, because both X and Y, x /¢
and y /c respectively, are real physical properties and both are constrained to remain
within the range of negative to positive one. In contrast, @, was chosen as a
nondimensionalizing parameter because it will present the least amount of problems
in the following analysis. Its only real drawback is that when the dimensionless
normal force proportionality constant is varied, £ will not shift with it. Fortunately,
because A is generally much smaller than K (their magnitudes will be discussed in
the next section.), the actual shift in the forcing frequency ratio due to varying A is
extremely small. The only other reasonable choice to use in place of w, is the linear

natural frequency,

oy = (K_z)‘*aB%
8 2/ my,

Although this would allow the effect of A on 2 to be incorporated into the solution
of (2.20) and (2.21), it would also mean that the equations of motion would have

14
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1/ (K——‘;—) in place of both of the 1/K and thus, some values would become

cumbersome. For example, the uncoupled stiffness would change from a value of one
to K/ (K - -‘é—)
2

2.3 Appropriate Variable Ranges

A significant part of the upcoming analysis is to examine how A, K, I" and E
affect dynamic behavior of the unbalanced rotating shaft. This will be accomplished
by varying the four parameters within the following practical limits.

The dimensionless normal force proportionality coefficient, A, for a single
magnet was determined by Knight et al. (1992) to be approximately equal to 0.15. Its
value for opposed magnets was less exact, so during the analysis, it will be varied
from 0.05 to 0.25. The values of the dimensionless proportional and derivative
control coefficients, unlike A, are less defined, although their selection does affect
certain bearing properties and must be chosen accordingly. For example, magnetic
bearings are often characterized by low damping; thus, to achieve an uncoupled
damping ratio, I' /2K, of 0.1 to 0.3 for 2 K equal to one, I must fall within the
range of 0.2 to 0.6. K on the other hand is inversely proportional to the uncoupled
damping ratio, so it would be advantageous to have large values of K which would
decrease the damping in the bearing. Unfortunately, K is also equal to the inverse of
the available displacement before the magnetic force becomes zero for I' = 0, so to
balance the two competing effects, K in the upcoming analysis will be limited to
values under five. The fourth and final variable to consider, the nondimensionalized
mass eccentricity, is dependent on the imperfection of the shaft, e, and the distance

from the rotor to the magnet, c. Generally, e, the dimensional rotating mass

15
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unbalance, is an extremely small number compared to c; however, ¢ is solely
dependent on the magnetic actuator design and in some instances may also be very
small. It is unlikely, nevertheless, that in a magnetic actuator magnitude of e will
approach that of ¢c. A more reasonable situation is that the dimensionless mass
unbalance is going to be equal to or less than 0.05; however, to be on the safe side, E

will be given values as high as 0.15.

16
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Chapter 3

Results And Analysis

3.1 Potential Energy

If it exists (or can be derived), a useful tool in many dynamic analyses is a
graphical representation of the potential energy, V, of the system. The dimensionless
potental energy, which can be derived from the restoring forces in the conservative

form of the governing equations, is

V= %K-I;:——i:-)(xz +Y?) —%szz‘ﬂ} 3.1)
In addition to the vertical and horizontal displacements, note that V is a function of
A and K. Consequently, fluctuations in either variable should lead to changes in the
form of the potential energy.

As A is increased from 0.05 to 0.25, with K held fixed, the potential energy
wells, Figures 3.1a to 3.1c, become increasingly shallow. Thus, as expected, when the
dimensionless normal force proportionality coefficient is increased the deviation of
the potential energy from the linear case becomes more pronounced. This departure

from the linear case is also increasingly evident at larger displacements. Also note
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Figure 3.1: Potential energy wells where K=3 and a. A=0.05 b. A=0.15 c. A=0.25,
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that in Figure 3.1 the potential functions, unlike some nonlinear systems, do not
contain any unstable regions, i.e. a local maximum, and only have one equilibrium
point, the origin, within the physical system.

If K is now varied while A is held constant, Figure 3.2, the changes in the
potential wells are similar to those observed in Figure 3.1. This may be somewhat
surprising given the fact that typically, when something thought to be analogous to
stiffness, such as the dimensionless proportional control coefficient, is increased, an
increase not a decrease in stiffness should occur. However, it is important to

remember that because of the nondimensionalization, the linear stiffnesses in (2.20)

and (2.21) are equal to 1—5‘% and thus, a reasonable increase in K will only affect

the potential wells slightly. If K is now increased to twenty, Figure 3.3, there exists
the possibility that the mass can enter an unstable area at high absolute values of X
and Y. In the magnetic actuator, the likelihood that K will reach such a high
magnitude is small; however, if the physical boundary of the dynamic system is

increased, then the unstable equilibrium points corresponding to

X Y)“(i\fmq2 T \F K2 )

will need to be avoided.

3.2 Dynamic Motion of the Shaft

In the following two sections, two different techniques will be used to examine
the free and forced nonlinear dynamic behavior of the circular shaft and the effects of -
K, A, I' and E on this motion. The initial analysis will be based on the Runge-Kutta
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Figure 3.2: Potential energy wells where A=0.15 and a. K=1b. K=3 c. K=5.
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Figure 3.3: Potential energy well where K=20 and A=0.15.

routine which is a highly accurate numerical method for solving differential equations
and is described in Appendix A. In the second section, the results will be calculated
using an approximate but sometimes extremely valuable analytical technique called

the harmonic balance method.
3.2.1 Runge-Kutta Method Free Vibration Results

Often when investigating nonlinear systems, such as a pendulum undergoing
largé: amplitude swings, it is useful to examine how the natural period changes with
amplitude. Unfortunately, explicitly solving for the natural period in this case cannot
be achieved because of the nonlinearity in the equations of motion of the shaft.
However, by using numerical simulation, an accurate estimate of the natural period of
the shaft as a function of the initial conditions can be obtained. An additional tool in
the construction of these graphs is to use the symmetry of the system. For example, in

Figure 3.3, the quartered section where both X and Y are positive, call it region one,
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has the same shape as the other quarters of the well and within region one, its two
halves are mirror images of each other. Because of this symmetry, only an eighth of
the inidal conditions need to be analyzed to garner a complete understanding of the

total behavior of the system. These initial conditions are defined as

Y, =Rsino

and

X, =Rcosd

where R is the nondimensional radial distance of the shaft and ¢ is the angle

measured from the x-axis to the radial distance vector, see Figure 3.4.

Ay

Figure 3.4: Summary of natural period initial conditions.

In Figure 3.5a, ¢ is fixed at 22.5 degrees and the radius is increased from zero to
one while both of the initial velocities are held at zero. For each increment in R the
natural period ratio, T, for both displacements is determined by measuring the time
between consecutive peak amplitudes and by dividing this result with the linearized

natural period, 2x/ 1—2—‘;- ,. Unlike the linear case, the T of both displacements is

initial condition dependent and the values of the two natural period ratios diverge and
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Figure 3.5: Numericaily obtained natural period for K=3, A=0.15, a. $=22.5 and varying R

b. R=0.5 and varying ¢.
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thus become more nonlinear as the radius increases. If the radius is now held fixed at
0.5 and 7 for both X and Y is measured for each increment in ¢, a graphical display

of the angle versus the ratio is obtained, Figure 3.5b. Only when ¢ is equal to

%(Zn —1) radians, where n is any integer, is there any agreement between the natural

period ratios of the two displacements. At every other angle the ratios are different
suggesting that the undamped, unforced motion of the shaft will not repeat every
period like the linear system. Instead, the behavior, see Figures 3.6a and 3.6b, will be
analogous to beating, which occurs in harmonically forced linear systems where the
natural and forcing frequencies are extremely close but not exact, and results in a
trajectory which is not an ellipse or a circle but is closed and passes over a large

portion of area, Figure 3.6c¢.
3.2.2 Runge-Kutta Method Forced Vibration Results

A useful tool for investigating how the nonlinearities affect the rotating dynamic
behavior of the shaft over ranges of system parameters is to construct amplitude
response curves for varying values of K, A, I" and E. This graph plots the maximum
steady-state nondimensionalized horizontal and vertical displacerhents versus the
frequency ratio, Q and Figures 3.7 to 3.15 are obtained by numerically simulating the
nondimensional equations of motion and by picking off both maximum
displacements after 400 cycles (to allow for transients to decay). Unfortunately,
contrary to their linear counterparts, the maximum amplitudcs in nonlinear systems
are initial condition dependent. Thus, to make the analysis easier, all of the following
amplitude response curves will be constructed using the initial conditions
X(0) = Y(0) = X(0) = Y(0) = 0, the rest state, unless stated otherwise.

A comparison of Figures 3.7a to 3.7¢, amplitude response curves where only K is
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Figure 3.6: Numerical free vibration a. Time series of X b. Time series of Y
c. Trajectory where K=3, A=0.15, R=0.5 and ¢=22.5.
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Figure 3.8: Uncoupled amplitude response curve where K=5, A=0, '=0.4 and E=0.1.

varied, yields some interesting results. First, as the dimensionless proportional control
coefficient is increased the amplitudes grow, especially near resonance. This behavior
may be somewhat surprising if K is again thought of in terms of stiffness or
proportional feedback; however, because of the nondimensionalization of (2.20) and
(2.21), K is actually more closely related to the inverse of the uncoupled damping
ratio, I'/ 2K, in each equation; therefore, the growing amplitudes near resonance
make sense for increasing values of K. The most surprising feature of graphs 3.7a to
3.7¢ is the difference in the maximum amplitudes of X and Y for K =5. In the
analogous uncoupled linear case, A =0, the maximum amplitudes are identical,
Figure 3.8; thus, the amplitude split in Figure 3.7¢ can be attributed to the
nonlinearity of the equations of motion. It is not completely surprising that this
behavior only occurred when K was large. For increased values of K, larger
amplitudes are expected and earlier, while examining the potential wells, larger
displacements meant the nonlinearity of the equations became more pronounced.

The time series, trajectories and phase projections of the nonlinear and linear

K =5 cases at comparable frequency ratios, Figures 3.9 and 3.10 respectively, yield
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some further interesting behavior. (Note that Figures 3.9 and 3.10 are at different
values of Q, this is necessary because o was not included in the selection of ®,.) As
expected, in the linear time series, Figure 3.10a, the maximum amplitudes are /2
out of phase. This however is not true in the nonlinear case, Figure 3.9a.; therefore,
when one component of displacement is at its maximum the other has a nonzero
value and the path resembles an angled ellipse. In addition, the maximum radial
amplitude in the nonlinear case, Figure 3.9b, is larger thus increasing the likelihood
of the rotor striking the magnetic actuator. It should be noted that, although the actual
maximum amplitudes and the transient motion in Figures 3.7 to 3.10 and some of the
subsequent graphs are well outside the physical limitations of the bearing, it is
beneficial to examine these cases because they provide a better dynamic
understanding of the system and may prove even more useful if the amplitude
restriction is somehow changed.

In Figures 3.11a to 3.11c, every variable except the normal force proportionality
constant is fixed. In each of the three graphs the amplitudes tend to decrease only
slightly and the peaks and the entire plots tend to be slightly shifted to the left for

increasing A. Once again this shift in amplitude is purely a function of what natural

frequency is used in the nondimensionalization of the equations of motion. If )

replaced ¥ in equation (2.19) then no shifts would occur in Figures 3.11a to 3.11c.
The major difference between the three graphs is, in the third graph, Figure 3.11c,
another amplitude split occurs. However, unlike the two distinct maximum
amplitudes in Figure 3.7¢, these different amplitudes result because for greater values
of A the system will deviate more from the linear case, recall Figures 3.1a to 3.1c.
Unlike K and A, I” must be decreased for the maximum X and Y displacements
to split. Actually, the effect of the dimensionless derivative control coefficient on the

amplitude response curves, Figure 3.12a to 3.12c, is extremely similar to the
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influence of 1/K on Figures 3.7a to 3.7c; in that any increase in I results in smaller
maximum amplitudes especially near resonance. This relationship between the two
variables is not surprising because the uncoupled damping ratibs in the equations of
motion are equal to I' / 2K. In Figure 3.12a, unlike any other plot up untl this point,
an addidonal solution occurs directly to the left of the amplitude split. This tiny
branch of solutions was found using different initial conditions from the traditional all
zeros. Instead, the frequency ratio was slowly decreased from 2.5 and the starting
values for each decrease in- Q were obtained using steady-state data from the
preceding frequency ratio. Using this method, the alternate solution was tracked until
approximately Q = 0.8875. At that point, the only solution that could be located was
the one where the two maximum amplitudes agree. It is also likely that an unstable
curve exists from the lowest frequency ratio of the alternate solution to the initial
point of the amplitude split, Q =0.9125. Tracking this unstable motion using present
path-following algorithms is however beyond the scope of the current work. Also,
because of the high complexity of investigating every initial condition, no specialized
attempt will be made to locate other possible stable solutions.

A more complete picture of how A, I’ and K, because of its close inverse
relationship to I', change the amplitude response curves and thus the dynamic motion
of the rotor, is shown in Figure 3.13. The results confirm the previous analysis. An
increase in the normal force proportionality constant will cause a slight decrease in
amplitude but an increased probability that the maximum amplitudes will not be
identical near resonance and that an additional solution will appear before resonance.
Decreasing I" as well as increasing K mainly cause an increase in the amplitude near
resonance and an increase in the likelihood of an amplitude split.

From a design standpoint it is also important to invéstigatc how the eccentricity of

the shaft affects the amplitudes at given frequency ratios, Figures 3.14a to 3.14c.
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Figure 3.15: Numecrical amplitude response curve where K=3, A=0.175,'=0.2
and E=0.2.

Because E is proportional to the external rotating unbalance forcing amplitude, any
increase in it results in an almost proportional increase in maximum displacement for
a given £. Thus, as E gets larger, the displacements increase and an amplitude split
becomes more likely, Figure 3.14c. If the initial forcing phase of the system is now
varied, the results in Figure 3.14 and all of the other previous graphs will remain
generally the same. The one exception is that for some initial forcing phases the
amplitudes and phase shifts of X and Y may be interchanged.

Other interesting, nonlinear behavior besides the amplitude jump can oceur with
the governing equations. For instance, in Figure 3.15, an amplitude response curve
where K =3, A=0.175, I’ = 0.2 and E = 0.2, at approximately Q = 0.9 and again
at  =0.9875 there exists multiple maximum amplitudes for the given frequency
ratios. At both frequency ratios, the maximum X and Y displacements fluctuate from
period to period, Figures 3.16a and 3.17a, suggesting either chaotic or quasi-periodic
motion (Thompson and Stewart (1986)). In order to correctly classify this behavior it
is necessary to complete a spectral analysis of the time series data using the Fast

Fourier Transform (FFT). The FFT converts 2N where N is any positive integer,
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equally spaced discrete data points, making sure that there are at least two points per
highest forcing period, to a frequency based domain using the Fourier Transform.
After the data has been changed to its new domain, it will only have significant
amplitudes at various combinations of its forcing frequencies. Thus, with the FFT, it
is possible to classify any motion as periodic, one forcing frequency, chaotic, infinite
forcing frequencies (also known as a broad-banded solution), or, as in the case of

Figure 3.16 and 3.17, quasi-periodic, two or more driving frequencies.
3.2.3 Harmonic Balance Method Forced Vibration Results

The dynamic behavior of the circular shaft can also be analyzed using an
analytical method called harmonic balance. This technique predicts the steady-state

response of the system by assuming solutions of the form

Y = CcosQT +Dsin QT (3.4)
and

X =GcosQT +Hsin QT (3.5)

where C, D, G and H are unknown constants. Substituting (3.4) and (3.5) and their
first and second derivatives with respect to nondimensional time, T, into (2.20) and
(2.21) yields the first two equations shown in Appendix B. Both equations can be
simplified by expanding, replacing the higher powered terms with their appropriate

trigonometric relations,

cos’ 0 = %(30056 +cos36) sin § = %(3sin9 +5in36)
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cos esm6=z(sm6—s1n38) cosOsin 9=Z(cose—cos36)

and neglecting the higher harmonics. See Equations B.3 and B.4 in Appendix B.
Next, the necessary equations needed to solve for the four unknowns, C, D, G and H,
result by separately grouping all of the cosQt and sinQt terms in B.3 and B.4 and
setting them equal to zero (balancing the harmonics). |

However, due to the coupling and higher-order terms in the resulting governing
equations, B.5 to B.8, the constants cannot be solved for analytically. Instead, they
must be determined by using a numerical procedure called Newton's method for
nonlinear systems. The method of solution for this technique is analogous to the more
well known Newton-Raphson method. Both methods use an initial guess of the
unknown(s), the partial derivatives of the function(s) and iteration to converge
quadrically on a local solution. In cases where multiple solutions exist, however, the
result can be solely dependent on the starting values of the unknowns and thus,
different initial guesses may yield different results. This however makes it possible to
locate a variety of approximate analytical solutions for given K, A, I" and E by
simply choosing different initial guesses for C, D, G and H.

Since the approximate analytical approach ignores all higher harmonics, it is
necessary to examine if, in this case, the technique yields valid results. This can be
accomplished by simply comparing graphs which are constructed using the
approximate analytical approach, Figures 3.18a and 3.19a, with graphs which are
obtained using numerical simulation, Figures 3.18b and 3.19b. The first two graphs
plot the displacement versus the frequency ratio, £2, at any steady-state
nondimensional time nT, where n=0,2,4,..., and Figures 3.19a and 3.19b plot the -

velocity versus the Q at the same time, n7. Both sets of graphs are almost identical,
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suggesting that the approximate analytical approach does provide an accurate
description of the steady-state dynamic behavior of the shaft. As an additional check,
an amplitude response curve with the same parameters as Figure 3.12a can be
constructed using the approximate analytical approach, Figure 3.20. A quick
comparison of these graphs continues to strengthen the validity of the apbroximate
analytical approach because the plots are almost identical with the exception of a
third solution near resonance in Figure 3.20. The absence of this additional solution
in Figure 3.12a can be simply attributed to the fact that it is probably unstable and

numerical simulation can only be used to locate stable solutions.
3.2.4 Limiting Shaft Displacement for Varying Parameters

Ideally, the unbalanced shaft displacement should be minimal and at worst it

should never come into contact with the bearing. Thus, for certain values of K, A

and T it is beneficial to know what nondimensionalized eccentricities will cause a
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specified unwanted displacement and what effect varying each parameter has on these
eccentricity values. Figure 3.21a, which was constructed using the approximate
analytical approach, is a plot of the lowest eccentricity value which causes the
amplitude of either X or Y, X, .., to exceed 0.4, 0.7 and 1.0 versus the frequency
ratio for K=3, A=0.15 and I"=0.4. As expected, the allowable nondimensional
eccentricity for each specified amplitude is smallest near resonance and largest as
Q =0 is approached. Somewhat surprising however is that below Q =0.75, the
curves are identical. At these small frequency ratios, the lowest eccentricity value
corresponds to the smallest E which causes the amplitudes to split. In each case
below Q =0.75, the amplitude of X or Y for these eccentricities is always greater
than one and as a result, the curves coalesce. The final noteworthy point of Figure
3.21a is the presence of a kink, which is denoted by an arrow, in the X ,,, = 1.0 case.
This bend only occurs in large maximum amplitude cases because for large
displacements, the amplitude response curves will not be smooth, as indicated by
Figures 3.7c, 3.12a and 3.14c.

The next three graphs, Figures 3.21b, 3.22a and 3.22b, continue to have the
lowest E and Q as the abscissa and ordinate variables; however, the amplitude limit
is no longer the third variable. Instead, either K, A or I", depending on the plot,
becomes the last parameter. As for the maximum allowable amplitude, it has been set
at 0.4 in each graph because, typically, the displacements should be kept as small as
possible. In the first of the three figures, the nondimensional proportional control
coefficient has been increased from one to five. As anticipated, when Q =1, the
smaller the K, the larger the eccentricity needs to be for either of the displacements
to become 0.4, recall Figures 3.7a to 3.7c. It also makes sense that at high values of
Q there is very little difference in the required E; however, according to the

amplitude response curves this same behavior is also expected at low frequency
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which causes a specified displacement at 2 given frequency ratio for A=0.15, I'=0.4,
a. K=3 and varying X .., b. X,... and varying K.
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Figure 3.22: Harmonic balance results which show the lowest eccentricity value
which causes a specified displacement at a given frequency ratio for K=3, X..=04,
a. A=0.15 and varying I’ b. I'=0.4 and varying A.
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Figure 3.23: Harmonic balance amplitude response curves where A=0,15, I'=0.4,
E=0.1 and K is varying.

ratios. But as stated in the previous paragraph, at small frequency ratios the lowest

value of the nondimensional eccentricity is dependent on the lowest E at which the

amplitude split occurs. And for varying K, these values are different, Figure 3.23. In

examining Figure 3.23, it is also important to recognize that for increasing values of
K greater than five, there exists a range of frequency ratios where the amplitudes
decrease and a larger E would be required to cause a specified displacement.

Although this only occurs for values of K which induce a split, the entire behavior is

completely contrary to any other previous results and would actually mean that if
K =6 and K =7 were included in Figure 3.21b their solutions would cross. In Figure

3.22a, the derivative control coefficient has replaced K as the third parameter.

Because the effect of I' on displacement is almost identical to the influence of 1/K

on the same variable, see Figures 3.7 to 3.12, Figures 3.21b and 3.22a exhibit similar
results for the same reasons.

Finally, the effect of the normal force proportionality constant on the lowest

47



C58

eccentricity value which causes the maximum displacement of either X or Y to
exceed 0.4 is examined in Figure 3.22b. For most of the frequency ratios, any change
in A results in little or no change in the lowest eccentricity value. This agrees with
the results from the earlier amplitude response curves, Figures 3.11a to 3.11c, where
an increase in A meant little change in amplitude. However, once again, at small
frequency ratios the lowest value of eccentricity does not relate to the amplitude
response curves because, as in the case of K and TI', the value at which the split
occurs varies for a changing A.

Each of the graphs, 3.21a, 3.21b, 3.22a and 3.22b, were constructed using the
approximate analytical approach. Although it has been shown that this technique is
sound when examining steady-state behavior, it does ignore transient motion which

may be significant especially if the rotor is started from rest. Thus, if escape from the

potential well, defined as the magnitude of X and Y exceeding 2AK2 at the same

nondimensional time, T, occurs before the onset of steady-state behavior, then
Figures 3.21 to 3.22 are rendered inappropriate. It should be noted that the transient
behavior will actually cause the shaft to strike the bearing before escape can occur,
unless K is unreasonably high, thus changing the equations of motion of the shaft,
see Figures 3.2 to 3.3. This modification of the equations has been ignored in the
upcoming graphical analysis; however, for a system with larger physical bounds the
forthcoming figures are appropriate.

Figures 3.24 and 3.25 display the nondimensional eccentricities, for a range of
frequency ratios, which cause escape during the first one hundred dynamic cycles,
after which transient motion has been assumed to have died out. (This is usually but
not necessarily the case.) Comparing the results obtained in Figure 3.22a with Figures
3.24a and 3.25, it is evident that the lowest eccentricity values which cause escape

during transient motion are always larger than the values which cause the steady-state
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Figure 3.24: Numerically obtained escape eccentricity versus frequency ratio for K=3,
=0.15,I'=0.2 and E=0.1 a. Full graph b. Blow up.
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Figure 3.25: Numerically obtained escape eccentricity versus frequency ratio for K=3,
A=0.15,T=0.4 and E=0.1.
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Figure 3.26: Numerically obtained escape eccentricity versus frequency ratio for K=5
A=0.25,=0.4 and E=0.1.
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amplitude to exceed 0.4. Thus, Figures 3.21 to 3.22 are valid.

The Figures 3.24a and 3.25 are themselves noteworthy. First, in both graphs there
is not a solid line which séparates escape eccentricities from nonescape eccentricities
and the boundaries which do exist are fractal (Crilly et al. (1991) and Feder (1988)).
For instance, in Figure 3.24 as the resolution of the graph increases the boundaries
change and if these escape boundaries are zoomed in upon further and further then
the fractal behavior of the plot will continue infinitely. (It is possible to calculate the
noninteger dimension of these boundaries, however, due to the time constraints of
this thesis it was not attempted.) The actual shape of either graph is extremely
complex as well, with gray areas, denoting escape between four cycles and one
hundred cycles, often occupying regions which are completely surrounded by black
sections, escape within the first three cycles, see Figure 3.24b. Yet each plot tends to
exhibit expected behavior. For example, when the derivative control coefficient is
increased the shape of either graph generally remains the same except the escape
eccentricity decreases for all frequency ratios. Also, the minimum value of E in both
graphs occurs near resonance, and at low frequency ratios, extremely high
eccentricities are necessary for escape. Varying K and A does not produce any
unexpected results c‘ither, Figure 3.26. Once again, the graph tends mainly to shift
downward. The one unexpected and definitely nonlinear quality of Figures 3.24 to
3.26, is the fact that for increasing I', thus damping, the minimum E tends to move
towards a lower frequency ratio. This agrees with the nonlinear large amplitude
motion of Figure 3.23; however, in linear rotating unbalance and even in the
magnetically controlled shaft where the damping ratio is sufficiently high enough that
the system is close to being linear, Figure 3.27, the maximum steady-state amplitude

tends to move to the right for increasing I'.
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Figure 3.27: Numerical amplitude response curves for K=1, A=0.15,
E=0.1 and varying I'.
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Chapter 4

Conclusions and Further Work

Recent active magnetic bearing research determined that curved magnets produce
forces which are two-dimensional. Using this conclusion, this dissertation has
accurately modelled the proportional-derivative flux controlled forces of the magnetic
bearings and the motion of an unbalanced rotating shaft which is being minimized by
these magnetic forces. The resulting governing equations are coupled and nonlinear
and exhibit important atypical dynamic behavior such as quasi-periodic motion and
hyst'eresis. In addition, the nonlinear terms also introduce the possibility of having
unstable motion within the actuator and it is also possible that near resonance and
with either large displacements or a large normal force proportionality constant, that
the steady-state maximum amplitudes may not be identical and multiple different
larger amplitude solutions may exist for a given set of parameters. Variations in any
one of these parameters tends to affect the dynamic motion differently; however,
generally, any increase in the nondimensional proportional control coefficient, K, or
the nondimensional rotating unbalance, E, or decrease in the nondimensional
derivative control coefficient, I, will cause an increase in amplitude and thus,
increase the possibility of introducing the unwanted nonlinear behavior. An increase

in A, the dimensionless normal force proportionality constant, will not increase the
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amplitude; however, it will make the nonlinear larger amplitude motion more
probable.

Further magnetic bearing research still needs to be completed in two areas. First,
because an increased nondimensional normal force proportionality constant can
introduce unwanted nonlinear behavior without any change in amplitude, it is
necessary to further examine its specific value in opposed pairs of magnets. In

addition, the previously presented results need to be experimentally verified.
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Runge Kutta Method
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The fourth-order Runge-Kutta method is the most popular numerical technique

that is used to solve nonlinear ordinary differential equations because it strikes a

balance between the computational complexity and accuracy of the solution. The

derivation of this method can be found in any numerical analysis text and yields the

following formulas for two coupled, first-order differential equations,v = f(t,v,x)

and x = g(t,v,x),

Vn+1 = Vn +"I61(K1 +2K2 + 2K3 +K4)
h, .
Xp+1 = Xg +--6-(L1 +2L,+2L3+Ly)

where h is the time step, n is any integer, v, and x are known and

Kl =f(tn'vn’xn)

2 2
h K, L
K3 = f(tn +5’Vn +—2—,Xn +'5’

L
K, = f(tn +%,vn +-I-<l,x11 +—l)
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K4 = f(tn + h,Vn +K3,Xn +L3)

L1 = g(tn’vn’xn)

K Ll)
L, =gt +—,v, +— x_ +—L
2 g(n zvn 2 n 2

h K L
L= g(tn+5,vn +-—22 ,xn+—22)

Ly =g(ty +h,v, +K3,x, +Ls)

When the two coupled equations of motion are second-order, it is necessary to put

each into state space form,

v=w xX=y

w = £(t,v,W,%,y) ¥ = g(t,v,w,x,y)

The same general theory can now be used to solve these four coupled first-order

equations,
Vpil = Vg +%(W1 +2W,y +2W3 +W,) (A.3)
Wpel = Wy + %(K1 +2K, +2K;3 +Ky) (A.4)
Xp+] = X + %(Y1 +2Y,+2Y3+Y,) (A.5)
Yni = a2 (Lo + 2y +2Ls 41,) (46)

except in this case wy and y, are also known and
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Wl =Wp

Kl = f(tn,Vn,Wl,Xn,Yl)

Yl =Y¥Yn
Ll = g(tn,vn,Wl,xn,Yl)

h
W2 =Wn+5‘K1
h ok h
Ly=gt,+—,v, +—W;,Wo,x_ +—=Y,,Y
2 g( n 5 Vn ) 1 2:Xq > 1 2)
h
h h h
K2 = f(tn +5,Vn +5’W1,W2,Xn +§Y1,Y2)
h
W, =Wn+'§'K2
h h h
Ky =1|t +—= v, +—W,,Wa,x, +=Y Y
3 (n 5 Vi ) 2 3>4n 2 2 3)
h
Y3 =¥Yn +'§:L2

W4 =Wn+h.K3

K4 = f(tn +h’vn +hw3,W4,Xn +hY3,Y4)
Y4 =Yn+hL3

Ly = gty + B, vy + W3, W,x, +hY3,Y,)
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Appendix B

Harmonic Balance Method Equations

~CQ2 cosQT - DQ? sin QT + I'(—CQsin QT + DQcos QT) + K(Ccos QT + Dsin QT)
—%(C cosQT + Dsin QT)(1 + K?(G cos QT + Hsin QT)?
+2KT (G cosQT + Hsin QT )(—-GQsin QT + HQ cos QT) + ['2(-GQsin QT + HQ cos QT)?)

= EQ?sin QT (B.1)

~GQ? cosQT —HQZsin QT + I'(-GQsin QT + HQ cos QT) + K(G cos QT + Hsin QT)
—%(G cos QT + Hsin QT)(1 + K2(Ccos QT + Dsin QT)?

+2KI(Ccos QT + Dsin QT)(—CQsin QT + DQcos QT) + 2 (-CQsin QT + DQcos QT)?)
=EQ?cosQT (B.2)

—CQ? cos QT -~ DQ2sin QT + I'(-CQsin QT + DQcos QT) + K(Ccos QT + Dsin QT)

—%((CcosQT +DsinQT) + KZ(G CG? + %CHZ + -;—DGH)cosQT
3

+G DG? + ZDHz + %—CGH)sin oD + 2KI‘Q((—%DG2 + %DHz + %CGH) cosQT

+(—lcc;2 +Leom?- lDGH) sinQT) -I2Q? ((-1— CG? +3DG2 - —l-DGH)sin QT
4 4 2 4 4 2

JFGCH2 +-§-DH2 —%CGH))) = EQ?sin QT (B.3)
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~GQ? cosQT — HQ? sin QT + ['(-GQsin QT + HQcos QT) + K(G cos QT + Hsin QT)

—%((G cosQT + Hsin QT) + K2 ((%CZG + %DzG + %CDH)COSQT

—Z—DZH + %CDG)sin QT+ 2KI‘Q((—:11—C2H + %DzH + %CDG)COSQT
%DzG - %CDH)sin QT) - erz(G_ CiG + Z—CzH - %CDH) sin QT

+GD20 + %DzH - —;—CDG))) = EQ?cosQT (B.4)

+(l C2H+
4

+(—1CZG +
4

(B.5)
~CKQ? +CK +DIrQ - %c —%DGHK2

+%DG2KI‘Q - %DHzKFQ + —‘:-DGI-H“2§22 ~

3:‘ CGK? -

—‘;icszrzm

’; CH2K? - %CGHKFQ

3: CH?T2Q? =0

(B.6)
—-DKGQ? +DK—CI‘Q—%D—%CGHK2 _A

+ i:- CGKIQ - %CHZKI‘Q + —::CGHTZQ2

DHZK? + 2‘ DGHKI'Q

A
8

DG%K? -

3;;‘ DGT2Q? -

3A
8
ZDHT2Q? = EKO?

(B. 7)
~GKQ? +GK + HI'Q — EG - -ﬁ-cmmz CZGKz 3 DZGKZ - éCDGKm

8
+% C?HKIQ - %DZHKI‘Q + i:—CDHl‘Zﬂz - %CzGI'zQz 3:‘ DZGFZQZ = EKQ?

(B.8)
—I—IKQZ+HK—GI‘Q——1;1H-%CDGK2—

+% C>GKIQ - %DZGIG"Q + i:‘—CDGI"ZQZ

—?—CzHKz -

3: clariq? - 2 D2Hr292 =0

—38éD2HK2 +A cpHRTO
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